
Finite Element Modeling of Hyper Elastic
Materials

Kenny Erleben
Department of Computer Science

University of Copenhagen
kenny@diku.dk

Marts 2013

ii

Preface

The finite element method is often considered by master students in computer
science to be a difficult topic to learn. Thus, we have embarked on writing yet an
introduction to the subject through a series of technical reports [Erleben(2011a),
Erleben(2011b), Erleben(2011d)]. This work is intended to be an introduction
to our notation and terminology.

There are many good textbooks already written which contains an introduc-
tion to tensors and continuum mechanics. This text is no substitute for these
works. Our text merely aim to give only the foundation needed for computer
science master students to read our other technical reports without having to
buy expensive textbooks.

There are many books on the subject of continuum mechanics [Chadwick(1999),
Spencer(2004), Reddy(2008)] and [Lai et al.(2009)Lai, Rubin, and Krempl] as
well as books about the finite element method [Zienkiewicz and Taylor(2000),
Bonet and Wood(2000), Cook et al.(2007)Cook, Malkus, Plesha, and Witt]. These
books provide in depth detail on tensor algebra and calculus as well as contin-
uum mechanics.

For the students wanting to become specialist on physics based modeling and
simulation we strongly encourage them to seek out textbooks like those listed
above to supplement the knowledge we introduce in our series of technical
reports on the finite element method.

Why have we written yet another introduction to finite element methods?
For starters the textbooks mentioned above are written for students in engi-
neering or physics. This leaves the computer scientist somewhat behind. Being
computer scientists ourselves we believe that we can write an introduction for
those students that will help them move on to more advanced texts from other
fields.

Another reason is to give a coherent frame for the many topics we cover.
Alone in regards to notation and conventions there are several different styles.
In this text and our later texts [Erleben(2011a), Erleben(2011b), Erleben(2011d)]
we try to put everything related to simulation of hyper elastic materials using a
finite element method into one complete setting. As such this text defines our
notation and conventions used later.

Our background originates in the field of computer graphics. This field has
applied finite element methods for generating images and movies for many dif-
ferent application areas including games, movies and virtual prototyping among
others. In our introduction to the subject we try to look reflectively on past work
on computer graphics and explain in detail some of the assumptions, tricks and
hacks that have been applied to obtain faster computations.

Contents

1 Tensors and Mechanics 1
1.1 Introduction to Tensor Algebra and Calculus 1
1.2 A Quick Primer on Continuum Mechanics 13

1.2.1 The Kinematics – The Strain Tensors 14
1.2.2 The Dynamics – The Stress Tensors and Power 20
1.2.3 Constitutive Equations . 24

1.3 Direction Derivatives . 26
1.4 Summary . 27

2 Time Integration 29
2.0.1 Time Discretization . 29
2.0.2 Time Discretization . 30

2.1 Newmark Time Integration . 31
2.1.1 The Linear Case . 32
2.1.2 The Non-linear Case . 34
2.1.3 Full Implicit Backward Euler Time Integration 35

2.2 Summary . 39

3 Lagrangian Formulations 41
3.1 Introduction . 41
3.2 The Corotational Linear Elastic Finite Element Method 42

3.2.1 The Physical Model . 43
3.2.2 Weak Form Reformulation 43
3.2.3 The Constitutive Equation 45
3.2.4 The Finite Element Discretization 47
3.2.5 Shape Functions . 47
3.2.6 The Corotational Formulation 50

3.3 The Non-linear Finite Element Method for Large Displacements . 51
3.3.1 The Equations of Motion 52
3.3.2 The Finite Element Method 53

3.4 The Finite Volume Method . 54
3.5 Summary . 58

iii

iv CONTENTS

4 Tangent Stiffness Matrix 59
4.1 Introduction . 59
4.2 The Non-linear Finite Element Method 60

4.2.1 The Governing and Constitutive Equations 60
4.2.2 The Finite Element Method 61

4.3 The Straightforward Calculus Approach 63
4.4 The Bonet and Wood Approach 65
4.5 Computing the Elasticity Tensor A 67

4.5.1 Material Examples . 70
4.6 Summary . 70

5 Implementation 71
5.1 Introduction . 71
5.2 The Non-linear Newton Method 72

5.2.1 Solving the Newton System 73
5.2.2 Is the Newton Direction a Descent Direction? 74
5.2.3 The Line–Search Method 75
5.2.4 The Stopping Criteria . 76
5.2.5 Generating Good Starting Iterates 77
5.2.6 Incremental Loading . 77
5.2.7 Computing the Elasticity Tensor 78
5.2.8 Built-in Matlab Support 80

5.3 The Influence of Boundary Conditions 80
5.4 Applying Surface Traction . 82
5.5 Using Preconditioning . 85
5.6 Mesh Quality Measures . 85
5.7 Numerical Experiments . 86

5.7.1 Meshing Issues . 87
5.7.2 Parameter Selection . 88
5.7.3 Performance Measurements 92
5.7.4 Convergence Rates . 94
5.7.5 Mesh Convergence Experiment 96
5.7.6 Time Step Convergence Experiment 99
5.7.7 Adaptive Time Stepping 101

5.8 Discussion and Further Work . 103

6 Advanced 107
6.1 Introduction . 107
6.2 Gluing Object Together . 108

6.2.1 A more algebraic approach 109
6.3 Signorini Problem . 110
6.4 Handling of Dynamic Contact . 111

6.4.1 What the F...? . 112

7 Previous Work 113

CONTENTS v

A Appendix 127
A.1 Supplementary Details and Preliminaries 127

A.1.1 Mathematical Preliminaries 127
A.1.2 Dealing with Volume Integrals 128
A.1.3 The Small Strain Tensor 128

A.2 The Assembly Process . 129
A.3 Power Conjugacy . 130
A.4 Bonet and Wood for the Second

Piola–Kirchhoff Stress Tensor . 132

vi CONTENTS

Chapter 1

Preliminaries on Tensor
Notation and Continuum
Mechanics

Having motivated our need for writing yet another text about the finite element
method we can embark on introducing the fundamentals needed for reading
our later chapters. In Section 1.1 we introduce tensors which is the mathe-
matical tool to be used. Hereafter in Section 1.2 we look at the physics of
continuous matter and derive the partial differential equations that describe its
motion. Having a firm grasp of the physics we close this preliminary text with
introducing the directional derivate in Section 1.3.

1.1 Introduction to Tensor Algebra and Calculus

We will start by introducing some concepts and definitions from tensor algebra
and tensor calculus. Our aim is not to be mathematically rigorous nor exten-
sive in our coverage. We simply seek to generalize enough concepts from ma-
trix algebra and vector calculus to allow us to later write up equations needed
to explain continuum mechanics. In the following we implicitly assume to be
working a 3 dimensional space. However, the tensor algebra and calculus we
derive can be stated in for any dimension. However, we only need to work
with 3 dimensional spaces in our treatment of continuum mechanics hence we
specialize immediately for this case.

The Cartesian basis vectors are denoted by ~e1, ~e2 and ~e3 and by definition
we write a vector in tensor notation as

~v =

3∑
i=1

vi~ei. (1.1)

Here vi is called the component of the vector ~v.

1

2 CHAPTER 1. TENSORS AND MECHANICS

As only one index is needed to label the components we refer to this as a
first order tensor. Obviously, a scalar would be a zero order tensor as no labeling
(indexing) is needed. As we see later a second order tensor needs two indices
to label the components and we will observe the similarity between a second
order tensor and matrix.

nth order tensor: A tensor is of nth order if n indices are needed to label all
its components. This gives us the relation to matrix algebra

• 0th order tensor corresponds to a scalar

• 1th order tensor corresponds to a vector

• 2th order tensor corresponds to a matrix

Tensor algebra generalizes into higher order. In this book we will be working
with 3th and 4th order tensors as well.

By definition the dot-product of the Cartesian basis vectors are defined as

~ei · ~ej = δij (1.2)

where δij is the Kronecker delta function defined as

δij =

{
1 i = j

0 i 6= j
(1.3)

From this definition we may now work out what the dot product of two vectors
~v and ~u is.

~u · ~v =

(
3∑
i=1

ui~ei

)
·

 3∑
j=1

vj~ej

 (1.4)

=

3∑
i=1

3∑
j=1

uivj~ei · ~ej (1.5)

=

3∑
i=1

uivi (1.6)

The above strategy for deriving our tensor algebra “rule” is general and we will
be using the principle of inserting the “defintion” of the corresponding nth or
tensor into the rules we wish to prove in order to derive the rules from principle
of construction.

We can find the components of a vector by taking the dot product with a
basis vector

vi = ~v · ei =

 3∑
j=1

vj~ej

 · ei =

3∑
j=1

vj~ej · ~ei = vi (1.7)

1.1. INTRODUCTION TO TENSOR ALGEBRA AND CALCULUS 3

Using matrix notation rather than tensor notation we write the components as
a column vector [

~v
]

=

v1

v2

v3

 (1.8)

Observe that we use bracketing to indicate that we have changed into a matrix
notation. It can be rather confusing when deriving formulas if one does not keep
a strict distinction between working in matrix notation or tensor notation. The
tensor notation has the benefit that it is independent of the choice of coordinates
and generalizes easily and simpler to higher dimensions. Hence it is a “stronger”
tool for working out the theory of continuum mechanics and discretizations.
However, as soon as in an implementation we choose a coordinate basis to
work with everything becomes vectors and matrices as seen from a computer
scientists viewpoint.

An important observation is that In tensor notation there is no notion of “
column” versus “row” vector. Here a vector is simply just a vector. A vector
remains unchanged if one uses a different basis. That is

~v =

3∑
j=1

vj~ej =

3∑
j=1

v′j
~Ej (1.9)

where ~Ei denotes the basis vectors of some other set of basis vectors (also obey-
ing the Kronecker delta requirement). In matrix notation the components would
be written as [

~v
]
e

=

v1

v2

v3

 6=
v′1v′2
v′3

 =
[
~v
]
E

(1.10)

Here the subscript denotes the chosen basis used to express the component
values with respect to. If no subscript is given then the default Cartesian basis
is assumed. Our default convention for the Cartesian basis vectors is

[
~e1

]
=

1
0
0

 , [~e2

]
=

0
1
0

 , and
[
~e3

]
=

0
0
1

 (1.11)

The dot product of vectors is commutative, that is we can write

~u · ~v = ~v · ~u (1.12)

which follows from the definition of the dot product. Scalar multiplication for a
vector is defined as

a~v = ~va = a

 3∑
j=1

vj~ej

 =

3∑
j=1

(avj)~ej (1.13)

4 CHAPTER 1. TENSORS AND MECHANICS

Let ~u, ~v and ~w be vectors then the tensor (or dyadic) product is defined as

(~u⊗ ~v) ~w = (~v · ~w) ~u (1.14)

A second order tensor is defined as a linear mapping that maps a vector (a
first order tensor) to a vector. That is

~v = A~u (1.15)

We express a second order tensor as a linear combination of tensor products as

A =

3∑
i=1

3∑
j=1

Aij (~ei ⊗ ~ej) (1.16)

where Aij are termed the components of the tensor. With this expression we
may have a second look at the definition of a second order tensor as a linear
mapping of vectors

~v = A~u (1.17)

=

 3∑
i=1

3∑
j=1

Aij~ei ⊗ ~ej

(3∑
k=1

uk~ek

)
(1.18)

=

3∑
i=1

3∑
j=1

3∑
k=1

Aijuk (~ei ⊗ ~ej)~ek (1.19)

=

3∑
i=1

3∑
j=1

3∑
k=1

Aijuk (~ej · ~ek)~ei (1.20)

=

3∑
i=1

3∑
j=1

Aijuj~ei (1.21)

We observe the similarity between the defintion of the second order tensor and
with the matrix-vector product. With the tensor product expression of the sec-
ond order tensor we may define what is meant by scalar multiplication of ten-
sors as

aA = Aa =

3∑
i=1

3∑
j=1

aAij (~ei ⊗ ~ej) (1.22)

where a is some scalar. Using the above expression gives us the familiar formula

Aij = ~ei ·A~ej (1.23)

1.1. INTRODUCTION TO TENSOR ALGEBRA AND CALCULUS 5

This follows from substitution

~ei ·A~ej = ~ei ·

(
3∑
k=1

3∑
l=1

Akl~ek ⊗ ~el

)
~ej (1.24)

= ~ei ·

(
3∑
k=1

3∑
l=1

Akl (~ej · ~el)~ek

)
(1.25)

= ~ei ·

(
3∑
k=1

3∑
l=1

Aklδjl~ek

)
(1.26)

=

3∑
k=1

3∑
l=1

Aklδjlδik (1.27)

= Aij (1.28)

A special tensor is the identity tensor

I =

3∑
i=1

~ei ⊗ ~ei =

3∑
i=1

3∑
j=1

δij~ei ⊗ ~ej (1.29)

which maps any vector to it self

~u = I~u (1.30)

as can be verified by substitution

I~u =

(
3∑
i=1

~ei ⊗ ~ei

)
~u =

3∑
i=1

(~ei · ~u)~ei =

3∑
i=1

ui~ei = ~u (1.31)

As with vectors we may write the components in matrix notation

[
A
]

=

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (1.32)

As before we use subscripts to indicate the basis vectors used

[
A
]
e

=

A11 A12 A13

A21 A22 A23

A31 A32 A33


e

6=

A′11 A′12 A′13

A′21 A′22 A′23

A′31 A′32 A′33


E

=
[
A
]
E

(1.33)

However, from a tensor viewpoint we have

A =

3∑
i=1

3∑
j=1

Aij~ei ⊗ ~ej =

3∑
i=1

3∑
j=1

A′ij
~Ei ⊗ ~Ej (1.34)

6 CHAPTER 1. TENSORS AND MECHANICS

The fact that a second order tensor is a linear mapping means that given two
second order tensors A and B then the linear combination of these

C = aA + bB (1.35)

is a second order tensor. That is one can show

Cij = aAij + bBij (1.36)

which we leave as an exercise of the reader.
Many of the functions and operations known from matrix algebra have

counter parts in tensor algebra. For instance the trace of a tensor is defined
as the sum of the diagonal components of the tensor

tr (A) =

3∑
i=1

Aii (1.37)

The determinant is defined as the determinant of the matrix counter part

det (A) = det
([

A
])

(1.38)

The transpose is defined operationally through

~u ·A~v = ~v ·AT~u (1.39)

where AT is the transpose tensor of A. If AT = A then we say A is a symmetric
tensor and if A = −AT then A is said to be a skew tensor (or skew symmetric).
The inverse tensor is defined as the tensor A−1 where

A−1A = I (1.40)

Summation and multiplication of tensors are defined accordingly

(A + B) ~u = A~u+ B~u (1.41)

AB~u = A (B~u) (1.42)

As an example let C = AB then in terms of components we have

C~u =

3∑
i=1

3∑
k=1

Aik (~ei ⊗ ~ek)

 3∑
l=1

3∑
j=1

Blj (~el ⊗ ~ej) ~u

 (1.43)

=

3∑
i=1

3∑
k=1

Aik (~ei ⊗ ~ek)

 3∑
l=1

3∑
j=1

Bljuj~el

 (1.44)

=

3∑
i=1

3∑
k=1

3∑
l=1

3∑
j=1

δklAikBljuj~ei (1.45)

=

3∑
i=1

3∑
j=1

(
3∑
k=1

AikBkj

)
(~ei ⊗ ~ej) ~u (1.46)

1.1. INTRODUCTION TO TENSOR ALGEBRA AND CALCULUS 7

Hence we have found that for the components of C we have

Cij =

3∑
k=1

AikBkj (1.47)

As expected from our familiarity with matrix multiplication. An often used
operation on tensors is the double contraction (or double product) which is
defined as

A : B =

3∑
i=1

3∑
j=1

AijBij (1.48)

This can be expressed differently as

A : B = tr
(
ATB

)
(1.49)

We ask the reader to verify this by now defining D = ATB and then show that
the components of D is

Dij =

3∑
k=1

AkiBkj (1.50)

Lastly using tr (D) =
∑3
i=1Dii the reader can verify A : B = tr

(
ATB

)
is true.

Kenny Says: Maybe add some definition of cross product too?
Let a be a zero order tensor then we define ∇a to mean

∇a ≡
∑
i

~ei∂ia

We call this the gradient operator of a or simply the gradient of a. The ∇
notation may also be defined when applied to a first order tensor ~b to mean(

∇~b
)
ij

= ∂jbi

Our definition is precisely the partial derivative of the vector function ~b or what
is also termed the Jacobian of ~b. Observe that when ∇ is applied to a first order
tensor the result is a second order tesnor. Another useful differential operation
is the divergence operator of a vector which we define as

∇ ·~b ≡
∑
i

∂ibi

Notice this maps a first order tensor into a zero order tensor as we expect. The
divergence of a second order tensor may also be defined using ∇-notation. Let
A be a second order tensor then we define the divergence operator of A as

∇ ·A ≡
∑
j

∑
i

∂iAij~ej (1.51)

8 CHAPTER 1. TENSORS AND MECHANICS

where ~ej is the jth unit vector. In terms of matrix notation this corresponds to

[
∂1∂2∂3

]︸ ︷︷ ︸
∇T

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

[
(
∑
i ∂iAi1) (

∑
i ∂iAi2) (

∑
i ∂iAi3)

] (1.52)

Each component is the divergence of the corresponding column vector. Hence
we make think conceptually as the divergence operator being applied column
wise to the “matrix”.

Kenny Says: Above definitions may seem arbitrary, maybe add some com-
mon thread/theory to help students overcome the abstraction?

The directional derivative of a tensor T in the direction of the constant vec-
tor ~c is defined as

D(T;~c) ≡ lim
α→0

d

dα
T (~x+ α~c)

By definition we have that ~x ≡
∑
j xj~ej and ~c ≡

∑
j cj~ej . Now we let ~y ≡ ~x+α~c

then we write the directional derivative as

D(T;~c) ≡ lim
α→0

d

dα
T (~x+ α~c)

=
d

dα
T (x1 + α c1, x2 + α c2, x3 + α c3)

∣∣∣∣
α=0

=
[
∂T
∂y1

∂y1
∂α

∂T
∂y2

∂y2
∂α

∂T
∂y3

∂y3
∂α

]
α=0

=
[
∂T
∂y1

c1
∂T
∂y2

c2
∂T
∂y3

c3
]
α=0

=
[
∂T
∂x1

c1
∂T
∂x2

c2
∂T
∂x3

c3
]
α=0

=
∑
j

∂T

∂xj
(~ej · ~c)

=
∑
j

(
∂T

∂xj
⊗ ~ej

)
~c

The last rewrite is a little bit of a “cheat” and requires some explanation. The
issue is the specific case for when T is a zero order tensor as the tensor prod-
uct definition would not make much sense between a “scalar” and a “vector”.
However, one may rewrite the zero tensor as aI =≡

∑
i a (~ei ⊗ ~ei) or simply

consider a mindless usage of our original defintion, (a⊗ ~v) ~w = (~v · ~w) a, gives
exactly the meaning we desire for this special case. The last rewrite has its im-
mediate obvious generalization benefits for all higher order tensors. Now using
the definitions of a zero order tensor T ≡ a gives D(a;~c) = (

∑
i ~ei∂ia) · ~c and

using first order tensor T ≡ ~b =
∑
i ~eibi gives D(~b;~c) =

(
∇~b
)
~c. Divergence of

a vector may be defined as ∇ ·~b = tr
(
∇~b
)

from this we see our previous def-
initions are in agreement with this definition. A recursive approach can be use

1.1. INTRODUCTION TO TENSOR ALGEBRA AND CALCULUS 9

to derive the divergence of a second order tensor by computing the divergence
of ∇ · (A~c) where A is second order tensor and ~c is a constant, we observe we
can use our first definition of divergence of first order tensor to find a formula
for divergence of second order tensor. We discover that ∇ · (A~c) = (∇ ·A) · ~c.

The product rule for the divergence operator. Let A be a second order tensor
and ~b a vector and ∇ ≡

∑
i ~ei∂i Then

∇ · (A~b) = (∇ ·A) ·~b+ A : (∇~b)T (1.53)

where

∇~b =

∂1
~b1 ∂2

~b1 ∂3
~b1

∂1
~b2 ∂2

~b2 ∂3
~b2

∂1
~b3 ∂2

~b3 ∂3
~b3

 . (1.54)

The double contraction between two second order tensors A,B is defined as

A : B =
∑
i

∑
j

AijBij (1.55)

Exercise Prove the product rule formula in (1.53).

Answer From definition of divergence of vector

∇ · (A~b) =
∑
i

∂i
∑
j

(Aijbj) (1.56a)

Apply product rule

∇ · (A~b) =
∑
i

∑
j

((∂iAij) bj +Aij (∂ibj)) (1.57)

Isolate ~bj-terms and use double contraction

∇ · (A~b) =

∑
j

∑
i

∂iAij~ej

 ·~b+ A : (∇~b)T (1.58)

This completes the proof.

The symmetric product rule. If A is a symmetric tensor then AT = A. Assuming
a symmetric A then the product rule from before can be rewritten as

∇ · (A~b) = (∇ ·A) ·~b+ A : (∇~b) (1.59)

Exercise Prove the symmetric form of the vector divergence formula (1.59).

10 CHAPTER 1. TENSORS AND MECHANICS

Answer Let A and B be two second order tensors. From definition of double
contraction

A : BT =
∑
i

∑
j

AijBji (1.60a)

=
∑
i

∑
j

AjiBij (1.60b)

= AT : B (1.60c)

Now if A is symmetric we have A : BT = A : B. Applying this rule to the
product rule completes our proof.

Change of variables. Let ~x and ~X be three dimensional vectors and let ~x =
~Φ(~X) where the domain is given by ~X ∈ V and the range by ~x ∈ v then change
of variables is given by the relation∫

v

f(~x)dv =

∫
V

f(~Φ(~X))

∣∣∣∣∣det

(
∂~Φ

∂ ~X

)∣∣∣∣∣ dV (1.61)

where the differential volume is given by dV = dX1dX2dX3 and similar defini-
tion apply for dv.

Usually we use the shorthand notation F = ∂~Φ

∂ ~X
and j = |det (F)| and then

we have the differential relation

dv = jdV (1.62)

In a two dimensional space we have correspondingly the differential relation
da = jdA.

Later we will show that the function ~Φ is the deformation function trans-
forming some undeformed (material) coordinates ~X into some deformed (spa-
tial) coordinates ~x. Hence the above relation becomes important for us when
we wish to algebraically manipulate integrals from spatial deformed space into
their counterparts in material undeformed space or vice versa.

Exercise Derive formula (5.46)for 2D and 3D case.

Answer In 2D we have that the undeformed differential area is given by dA =
dX1dX2 where dX1 and dX2 are the differentials along the basis vectors. We
may define the corresponding differential vectors as

d ~X1 = ~e1dX1 (1.63a)

d ~X2 = ~e2dX2 (1.63b)

From the definition of the differential we have that an undeformed material
vector d ~M maps into its corresponding spatial deformed vector d~m as

d~m = Fd ~M (1.64)

1.1. INTRODUCTION TO TENSOR ALGEBRA AND CALCULUS 11

. Hence, we can map the differential vectors from undeformed space into de-
formed space as follows

d~xi = Fd ~Xi for i = 1, 2 (1.65)

We may now write the corresponding differential area in the spatial space as

da = |d~x1 × d~x2| (1.66a)

= |F~e1dX1 × F~e2dX2| (1.66b)

= |F~e1 × F~e2| dX1dX2 (1.66c)

= |det (F)| dX1dX2 (1.66d)

= jdA (1.66e)

where we recognized F~e1 × F~e2 to be the cross product of the first and second
column of the corresponding matrix of F and hence in 2D the same as the
determinant of that 2-by-2 matrix.

In 3D d ~X3 = ~e3dX3 and dV = dX1dX2dX3 and the spatial differential
volume is given by the triple space product dv =

∣∣∣d ~X3 ·
(
d ~X1 × d ~X2

)∣∣∣. The

proof in 3D follows by observing that F~e3 · (F~e1 × F~e2) = det (F)

Nanson’s Relation. Let the volume elements in spatial (lower case) and mate-
rial (upper case) coordinates be written as

dv = d~x · d~s (1.67a)

dV = d ~X · d~S (1.67b)

where d~x = ∂Φ

∂ ~X
d ~X and d~s = ds~n and d~S = dS ~N . From change of variables and

using F ≡ ∂Φ

∂ ~X

dv = jdV (1.68a)

d~x · d~s = jd ~X · d~S (1.68b)

d ~X · FT ds~n = d ~X · jdS ~N (1.68c)

We have Nanson’s Relation

ds~n = jF−T dS ~N (1.69)

The Contraction and trace relation,

tr
(
ABT

)
= tr

(
ATB

)
= A : B (1.70)

Proof, by definition

tr
(
ATB

)
=
∑
j

(
ATB

)
jj

(1.71a)

=
∑
j

(∑
i

AT
jiBij

)
(1.71b)

=
∑
j

∑
i

AijBij (1.71c)

12 CHAPTER 1. TENSORS AND MECHANICS

The proof follows by comparison with A : B =
∑
j

∑
i AijBij Trace relations.

It can be shown for second order tensors A, B, and C, that

atr (A) = tr (aA) (1.72)

and
tr (AB) = tr (BA) (1.73)

also
tr (ABC) = tr (CAB) (1.74)

The first two “rules” follow straightforward from definitions. The third rule
comes from applying the second rule, tr ((AB) C) = tr (C (AB)). Derivatives
with respect to tensors. Let f(A) be a scalar function of the tensor A then by
definition we have [

∂f(A)
∂A

]
ij

=
∂f(A)

∂Aij
(1.75)

Differentiation rules. Let A,B ∈ R3×3

∂ (A : B)

∂A
= B (1.76a)

∂ (A : B)

∂B
= A (1.76b)

∂ (A : A)

∂A
= 2A (1.76c)

∂tr (A)

∂A
= I (1.76d)

∂tr
(
A2
)

∂A
= 2A (1.76e)

∂tr (A)
2

∂A
= 2tr (A) I (1.76f)

Exercise Prove the differentiation rules above in (1.76).

Let A be a second order tensor then

∂det (A)

∂A
= det (A) A−T (1.77)

Exercise Prove the rule above in (1.77).

Answer Assuming A is symmetric and using eigenvalues and eigenvectors we
observe

det (A) A−T = λiλjλk
∑
m

1

λm
(~nm ⊗ ~nm) = λiλj (~nk ⊗ ~nk)+λiλk (~nk ⊗ ~nj)+λjλk (~nk ⊗ ~ni)

(1.78)

1.2. A QUICK PRIMER ON CONTINUUM MECHANICS 13

where λk ’s are eigenvalues and ~nk are eigenvectors. From the chain rule we
find

∂det (A)

∂Aij
=

3∑
m=1

∂det (A)

∂λm

∂λm
∂Aij

= λiλj
∂λk
∂Aij

+ λiλk
∂λj
∂Aij

+ λjλk
∂λi
∂Aij

(1.79)

If we can prove ∂λk
∂Aij

= (~nk · ~ei) (~nk · ~ej) = (~nk ⊗ ~nk)ij then the theorem holds.
By definition of eigenvalues and eigen vectors

A~nk = λk~nk

and since ~nk̇~nk = 1 we find

~nk ·A~nk = λk (1.80)

Now A is by definition given by

A =
∑
h

∑
g

Ahg (~eh ⊗ ~eg)

Substitution into (1.80) gives

λk =
∑
h

∑
g

Ahg~nk · (~eh ⊗ ~eg)~nk

Now it follows that

∂λk
∂Aij

= ~nk · (~ei ⊗ ~ej)~nk = (~nk ⊗ ~nk)ij

1.2 A Quick Primer on Continuum Mechanics

In this section we will introduce the equation of motion for an elastic solid. The
equation is given by the partial differential equation,

ρ~̈x = ~b+∇ · σ. (1.81)

This is the governing equation when computing elastic deformations numeri-
cally. For this task we will introduce the boundary conditions of the Cauchy
stress tensor σ which is given by

σ~n = ~t, (1.82)

where ~t is a known applied surface traction. Finally, a constitutive law is needed
to tie things together. The constitutive law provides a relation between stress
and strain often expressed as,

S =
∂Ψ

∂E
(1.83)

where S is second Piola–Kirchhoff stress tensor and E is the Green strain tensor.
Now we will derive all these equations that we need.

14 CHAPTER 1. TENSORS AND MECHANICS

1.2.1 The Kinematics – The Strain Tensors

The definition of material and spatial coordinates. We have two set of coordi-
nates

• Let ~X ∈ R3 be undeformed coordinates

• and ~x ∈ R3 the deformed coordinates

The deformation is given by the mapping Φ : R3 7→ R3 from undeformed coor-
dinates into deformed coordinates,

~x = ~Φ(~X) (1.84)

Observe that the same global reference coordinate system is used for both set
of coordinates. Further, undeformed coordinates are sometimes called material
coordinates and deformed coordinates the spatial coordinates. The deformation
gradient. By definition of differentials we have

d~x =
∂~Φ

∂ ~X︸︷︷︸
F

d ~X (1.85)

The partial derivative ∂~Φ

∂ ~X
= F is referred to as the Deformation gradient. In

particular we have

Fij =
∂~Φi

∂ ~Xj

=
∂~xi

∂ ~Xj

(1.86)

Using local deformation measures. Think of d ~X1 and d ~X2 as arbitrary chosen
small needles. By definition we have

d~x1 = Fd ~X1, (1.87a)

d~x2 = Fd ~X2. (1.87b)

To describe any local deformation we may investigate the dot products

d~x1 · d~x2 and d ~X1 · d ~X2 (1.88)

as these hold information about any local angle or length deformations. The
definition of the Right Cauchy–Green deformation tensor. First we will try to
express d~y1 · d~y2 in terms of material coordinates,

d~x1 · d~x2 = d~xT1 d~x2 (1.89a)

=
(
Fd ~X1

)T (
Fd ~X2

)
(1.89b)

= d ~XT
1

(
FTF

)︸ ︷︷ ︸
C

d ~X2 (1.89c)

1.2. A QUICK PRIMER ON CONTINUUM MECHANICS 15

where
C = FTF (1.90)

is called the right Cauchy–Green deformation tensor. Tensor invariants. The
eigenvalues of C are independent of rotation. Thus, the coefficient of the char-
acteristic polynomial are invariants

det (C− Iλ) = −λ3 + ICλ2 − IICλ+ IIIC = 0 (1.91)

where

IC = tr (C) = C : I (1.92a)

IIC = C : C (1.92b)

IIIC = det (C) (1.92c)

An alternative definition of the second invariant are II∗C = 1
2

(
tr (C)

2 − tr
(
C2
))

.
We prefer IIC as it simplify later equations.

Exercise Discuss why the invariants are invariant (ie. independent of rotation)

The eigenvalue decomposition. Since C is symmetric positive definite we know
that an eigenvalue decomposition exists

CN−NΛ = 0 (1.93)

where

N =
[
~N1

~N2
~N3

]
(1.94a)

Λ =

λ2
1 0 0

0 λ2
2 0

0 0 λ2
3

 (1.94b)

and NTN = NNT = I and 0 < λ2
3 ≤ λ2

2 ≤ λ2
1 ∈ R. This can be rewritten as

C = NΛN =
∑
i

λ2
i

(
~Ni ~N

T
i

)
(1.95)

Next we will express the invariants in terms of eigenvalues. Observe that know-
ing the eigenvalues λ2

i of C we can compute the tensor invariants as

IC = λ2
1 + λ2

2 + λ2
3 (1.96a)

IIC = λ4
1 + λ4

2 + λ4
3 (1.96b)

IIIC = λ2
1λ

2
2λ

2
3 (1.96c)

These formulas will become handy when we later wish to change coordinates.

Exercise Derive the above formulas from the ones given in terms of C. If you
have time derive an eigenvalue version of the invariant II∗C .

16 CHAPTER 1. TENSORS AND MECHANICS

Finding the rotation tensor. The square root of C is

C =
√

C
√

C = UU (1.97)

with
U =

∑
i

λi

(
~Ni ~N

T
i

)
(1.98)

Let us define the tensor R as
R = FU−1 (1.99)

We can then prove that R is a rotation tensor

RTR = U−TFTFU−1 (1.100a)

= U−TCU−1 (1.100b)

= U−TUUU−1 (1.100c)

= I (1.100d)

The polar decomposition of the deformation gradient. The new rotation tensor
R implies that F can be decomposed as

F = RU (1.101)

The implication is

d~x = F~dX = R
(
Ud ~X

)
(1.102)

where
(
Ud ~X

)
is a stretch along the eigenvectors and R is a rotation of the

stretched vector. Therefore

• U is called the stretch tensor

• R is called the rotation tensor

Definition of the left Cauchy–Green deformation tensor. Next we will rewrite
d ~X1 · d ~X2 in terms of spatial coordinates,

d ~X1 · d ~X2 = d ~XT
1 d

~X2 (1.103a)

=
(
F−1d~x1

)T (
F−1d~x2

)
(1.103b)

= d~xT1

FFT︸ ︷︷ ︸
B

−1

d~x2 (1.103c)

where
B = FFT (1.104)

1.2. A QUICK PRIMER ON CONTINUUM MECHANICS 17

is called the left Cauchy–Green deformation tensor. The definition of the Lagrange–
Green strain tensor. We look at the deformation change. The difference between
spatial and material dot products expressed in material coordinates,

1

2

(
d~x1 · d~x2 − d ~X1 · d ~X2

)
= d~xT1 d~x2 − d ~XT

1 d ~X2 (1.105a)

=
1

2

(
Fd ~X1

)T (
Fd ~X2

)
− d ~XT

1 d
~X2 (1.105b)

= d ~XT
1

1

2

(
FTF− I

)
︸ ︷︷ ︸

E

d ~X2 (1.105c)

where
E =

1

2

(
FTF− I

)
=

1

2
(C− I) (1.106)

is called the Green strain tensor. The definition of the Euler–Almansi strain
tensor. We describe the deformation change in terms of spatial coordinates,

1

2

(
d~x1 · d~x2 − d ~X1 · d ~X2

)
= d~xT1 d~x2 − d ~XT

1 d ~X2 (1.107a)

=
1

2

(
d~xT1 d~x2 −

(
F−1d~x1

)T (
F−1d~x2

))
(1.107b)

= d~xT1
1

2

(
I−

(
FTF

)−1
)

︸ ︷︷ ︸
e

d~x2 (1.107c)

where
e =

1

2

(
I−

(
FFT

)−1
)

=
1

2

(
I−B−1

)
(1.108)

is called the Euler strain tensor. Conversion from spatial to material tensors.
Observe that

e = F−TEF−1 (1.109a)

E = FTeF (1.109b)

These are general tensor conversion formulas. The definition of the displace-
ment field. Let us define the displacement field as follows

~u = ~x− ~X (1.110)

Then we have
~x = ~u+ ~X (1.111)

and

F =
∂(~u+ ~X)

∂ ~X
=

∂~u

∂ ~X
+ I (1.112)

or
∂~u

∂ ~X
= F− I (1.113)

18 CHAPTER 1. TENSORS AND MECHANICS

Using the definition of the displacement field. Let us use F = ∂~u

∂ ~X
+ I in the

definition of the Green strain tensor

E =
1

2

((
∂~u

∂ ~X
+ I

)T (
∂~u

∂ ~X
+ I

)
− I

)
(1.114a)

=
1

2

(
∂~u

∂ ~X

T ∂~u

∂ ~X
+
∂~u

∂ ~X
+
∂~u

∂ ~X

T
)

(1.114b)

The assumption of small displacement gradients. If ‖ ∂~u

∂ ~X
‖� 1 and ‖ ∂~u

∂ ~X
‖� 1

then ∂~u

∂ ~X

T ∂~u

∂ ~X
≈ 0 and we have

E ≈ ε0 =
1

2

(
∂~u

∂ ~X

T

+
∂~u

∂ ~X

)
(1.115)

This strain tensor is called the Cauchy strain tensor. If we used e instead of E
we would have found

e ≈ ε =
1

2

(
∂~u

∂~x

T

+
∂~u

∂~x

)
(1.116)

For small displacement gradients x ≈ X, ∂~u∂~x ≈
∂~u

∂ ~X
, and so ε0 ≈ ε. In summary

we have introduced the following strain tensors

The Green strain tensor

E =
1

2

(
∂~u

∂ ~X

T ∂~u

∂ ~X
+
∂~u

∂ ~X
+
∂~u

∂ ~X

T
)

(1.117)

The Cauchy strain tensor

ε =
1

2

(
∂~u

∂ ~X

T

+
∂~u

∂ ~X

)
(1.118)

Observe that using ∂~u

∂ ~X
= F− I we have

ε0 =
1

2

(
FT + F

)
− I (1.119)

The definition of the velocity field. Since ~x = Φ(~X, t) then the spatial velocity
of a material point is

~v(~X, t) ≡ ~̇x(~X, t) =
∂~x(~X, t)

∂t
=
∂Φ
(
~X, t
)

∂t
(1.120)

or given in terms of spatial coordinates

~v(~x, t) = ~v
(
Φ−1 (~x, t)

)
(1.121)

1.2. A QUICK PRIMER ON CONTINUUM MECHANICS 19

The velocity gradient with respect to the spatial coordinates is then

V =
∂~v(~x, t)

∂~x
(1.122)

Observe

Ḟ =
d

dt

(
∂Φ

∂ ~X

)
(1.123a)

=
∂

∂ ~X

(
∂Φ

∂t

)
(1.123b)

=
∂

∂ ~X
~v (1.123c)

=
∂~v

∂~x

∂~Φ

∂ ~X
(1.123d)

= VF (1.123e)

Resulting in
V = ḞF−1 (1.124)

The definition of the rate of deformation tensor. Taking the derivative

d

dt
(d~x1 · d~x2) = d ~XT

1 Ċd ~X2 = 2d ~XT
1 Ėd ~X2 (1.125)

because E = 1
2 (C− I). The material strain rate tensor is

Ė =
1

2
Ċ =

1

2

(
ḞTF + FT Ḟ

)
(1.126)

Using d ~X = F−1d~x we have

1

2

d

dt
(d~x1 · d~x2) = d~xT1 F−T ĖF−1︸ ︷︷ ︸

D

d~x2 (1.127)

where D is the rate of deformation tensor. Coordinate conversion of the rate
of deformation tensors. Observe that similar as for the Euler–Almansi and
Lagrange–Green strain tensors we have

D = F−T ĖF−1 (1.128a)

Ė = FTDF (1.128b)

From this we find that

D = F−T ĖF−1 (1.129a)

= F−T
1

2

(
ḞTF + FT Ḟ

)
F−1 (1.129b)

=
1

2

(
V + VT

)
(1.129c)

because V = ḞF−1. Thus, D is the symmetric part of the velocity gradient.

20 CHAPTER 1. TENSORS AND MECHANICS

1.2.2 The Dynamics – The Stress Tensors and Power

The spatial surface element d~s can be written as

d~s =

d~s1

d~s2

d~s3

 (1.130)

where d~si is the projection of the area of surface d~s onto the ith coordinate axis.
Observe that the surface normal is given by

~n =
d~s

‖ d~s ‖
(1.131)

We can now introduce Cauchy’s stress hypothesis. By definition we have

• Stress is force per unit area

If we apply the force d~f to the surface element d~s

d~f1 = σ11d~s1 + σ12d~s3 + σ13d~s3 (1.132a)

d~f2 = σ21d~s1 + σ22d~s3 + σ23d~s3 (1.132b)

d~f3 = σ31d~s1 + σ32d~s3 + σ33d~s3 (1.132c)

where σij depends on position and time, collecting them

σ =
[
σij
]

(1.133)

we have
d~f = σd~s (1.134)

where σ is the Cauchy stress tensor. The first Piola–Kirchhoff stress tensor. By
definition the Cauchy stress tensor

d~f = σd~s (1.135)

The first Piola–Kirchhoff stress tensor is defined as

d~f = Pd~S (1.136)

So we must have
σd~s = d~f = Pd~S (1.137)

Using Nanson’s Relation

σjF−T d~S = d~f = Pd~S (1.138)

From this we have the relation between the Cauchy stress tensor and the first
Piola–Kirchhoff stress tensor

P = jσF−T (1.139)

1.2. A QUICK PRIMER ON CONTINUUM MECHANICS 21

The second Piola–Kirchhoff stress tensor. By definition the Cauchy stress tensor

d~f = σd~s (1.140)

The second Piola–Kirchhoff stress tensor is defined as

d~F = Sd~S. (1.141)

Since d~f = Fd~F we must have

σd~s = d~f = Fd~F = FSd~S (1.142a)

σd~s = FSd~S (1.142b)

jF−1σF−T d~S = Sd~S (1.142c)

So
S = jF−1σF−T (1.143)

The traction force. We have
d~f = σd~s (1.144)

If we divide by surface area we will have traction ~t = d~f/ ‖ d~s ‖

~t = σ~n (1.145)

where ~t1~t2
~t3

 =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

~n1

~n2

~n3

 (1.146)

Volume integration of forces. Given the body volume force density ~b and arbi-
trary spatial volume element v with spatial surface s then the total force on the
volume is found by integration

~F =

∫
v

~bdv +

∮
s

~tds (1.147a)

=

∫
v

~bdv +

∮
s

(σ~n) ds (1.147b)

Recall Gauss–Divergence Theorem, for tensor field A over any closed volume v
with surface s ∫

v

∇ ·Adv =

∮
s

A~nds (1.148)

Applying this to
~F =

∫
v

~bdv +

∮
s

σ~nds (1.149)

yields
~F =

∫
v

(
~b+∇ · σ

)
︸ ︷︷ ︸

~f∗

dv (1.150)

22 CHAPTER 1. TENSORS AND MECHANICS

The total force and the effective force. In mechanical equilibrium the effective
force ~f∗ must be zero since v was chosen arbitrary. Thus, writing it out

~b+∇ · σ = 0 (1.151a)

This is Cauchy’s equation of equilibrium. In non equilibrium we must take
inertia forces into account, ~F =

∫
v
ρ~̈xdv,

ρ~̈x = ~b+∇ · σ (1.152a)

This is the motion of equation in spatial coordinates for any continuum. We will
now recall the classical mechanics definitions of work and power. Let ~x(t) be a
particle and ~f some force acting on the particle. Work is force times distance,
for a constant force over a displacement ~u

W = ~f · ~u (1.153)

Or more general

W =

∫
~f · d~x (1.154)

Power is the rate at which work is performed

P ≡ dW

dt
(1.155)

The instantaneous power is P = ~f · ~v and so W =
∫ t

0
~f · ~vdt. The instantaneous

power of the effective force is by definition,

p = ~f∗ · ~v (1.156)

The total instantaneous power applied by the effective force

P =

∫
v

pdv =

∫
v

~f∗ · ~vdv (1.157)

Rewriting into

P =

∫
v

(
~b+ (∇ · σ)

)
· ~vdv (1.158a)

=

∫
v

(∇ · σ) · ~vdv +

∫
v

~b · ~vdv (1.158b)

Using
∇ · (σ~v) = (∇ · σ) · ~v + σ : (∇~vT) (1.159)

Then

P =

∫
v

(∇ · σ) · ~vdv +

∫
v

~b · ~vdv (1.160)

1.2. A QUICK PRIMER ON CONTINUUM MECHANICS 23

Becomes
P =

∫
v

∇ · (σ~v)dv −
∫
v

σ : VT dv +

∫
v

~b · ~vdv (1.161)

Recall ∇~vT = VT . Using the Gauss–Divergence theorem

P =

∮
s

~n · (σ~v)ds−
∫
v

σ : VT dv +

∫
v

~b · ~vdv (1.162)

Using ~t = σ~n and σT = σ

P =

∮
s

~t · ~vds−
∫
v

σ : Vdv +

∫
v

~b · ~vdv (1.163)

Using D = 1
2

(
V + VT

)
and symmetry of σ

P =

∮
s

~t · ~vds−
∫
v

σ : Ddv +

∫
v

~b · ~vdv (1.164)

Exercise Prove that if σ = σT then σ : VT = σ : V and that σ : V = σ : D.

Definition of the Eulerian instantaneous power. The internal stress power term
in spatial coordinates is

Pe =

∫
v

σ : Vdv =

∫
v

σ : Ddv (1.165)

Thus, in terms of power we say that σ is power conjugate to D. Our next task is
to rewrite the internal power in terms of material coordinates. The result is to
find the power conjugate quantities of

• First Piola–Kirchhoff stress tensor

• Second Piola–Kirchhoff stress tensor

The power conjugate of P.

Pe =

∫
v

σ : Vdv (by definition)

=

∫
V

jσ : VdV (by dv = jdV)

=

∫
V

jσ :
(
ḞF−1

)
dV (by V = ḞF−1)

=

∫
V

tr
(
jσ
(
ḞF−1

))
dV (by A : B = tr

(
ATB

)
)

=

∫
V

tr
((
jF−1σ

)
Ḟ
)
dV (tr (AB) = tr (BA))

=

∫
V

P : ḞdV (by tr
(
ATB

)
= A : B)

24 CHAPTER 1. TENSORS AND MECHANICS

The power conjugate of S.

Pe =

∫
v

σ : Ddv (by definition)

=

∫
V

jσ : DdV (by dv = jdV)

=

∫
V

jσ :
(
F−T ĖF−1

)
dV (by D = F−T ĖF−1)

=

∫
V

tr
(
jσ
(
F−T ĖF−1

))
dV (by A : B = tr

(
ATB

)
)

=

∫
V

tr
((
jF−1σF−T

)
Ė
)
dV (by tr (AB) = tr (BA))

=

∫
V

S : ĖdV (by tr
(
ATB

)
= A : B)

We may now study the energy balance. For the equilibrium system mechanical
energy balance means that P = 0. That is the time derivative of mechanical
energy is zero – constant in time. For the case of non-equilibrium system we
must include inertia forces,

P =

∫
v

(
ρ~̈x−~b−∇ · σ

)
· ~vdv (1.168)

Repeating the previous derivations leans to the total power becomes

P =

∫
v

ρ~̈x · vdv +

∫
v

σ : Ddv −
∮
s

~t · ~vdv −
∫
v

~b · ~vdv (1.169)

and it must be zero for conservation of mechanical energy.

1.2.3 Constitutive Equations

Expressing the strain energy in terms of P. The total strain energy Ψ,

Ψ(F) =

∫ t

0

P : Ḟ︸ ︷︷ ︸
=Ψ̇

dt (1.170)

By the chain rule we have

Ψ̇ =
d

dt
Ψ(F) =

∂Ψ

∂F
: Ḟ (1.171)

So
P : Ḟ = Ψ̇ =

∂Ψ

∂F
: Ḟ (1.172)

and we must have
P =

∂Ψ

∂F
(1.173)

1.2. A QUICK PRIMER ON CONTINUUM MECHANICS 25

Next we will examine the strain energy in terms of S. The total strain energy Ψ,

Ψ(F) =

∫ t

0

S : Ė︸ ︷︷ ︸
=Ψ̇

dt (1.174)

By the chain rule we have

Ψ̇ =
d

dt
Ψ(E) =

∂Ψ

∂E
: Ė (1.175)

So
S : Ė = Ψ̇ =

∂Ψ

∂E
: Ė (1.176)

and we must have
S =

∂Ψ

∂E
(1.177)

When considering isotropic materials then the strain energy is a function of
invariants of C

Ψ(C) = Ψ(IC , IIC , IIIC) (1.178)

The Second Piola–Kirchhoff stress tensor computed as

S = 2
∂Ψ

∂IC
I + 4

∂Ψ

∂IIC
C + 2j2 ∂Ψ

∂IIIC
C−1 (1.179)

Exercise Derive the relation in (1.179).

Answer By definition 2(E + I) = C

S =
∂Ψ(C)

∂C

∂C

∂E
= 2

∂Ψ

∂C
(1.180)

For isotropic materials stretch is independent of rotation Ψ(C) = Ψ(IC , IIC , IIIC)

S = 2

(
∂Ψ

∂IC

∂IC
∂C

+
∂Ψ

∂IIC

∂IIC
∂C

+
∂Ψ

∂IIIC

∂IIIC
∂C

)
(1.181)

where
∂IC
∂C

= I (1.182a)

∂IIC
∂C

= tr (C) I−C (1.182b)

∂IIIC
∂C

= det (C) C−T = j2C−1 (1.182c)

The saint Venant–Kirchhoff model. For the simplest hyper elastic material model
the strain-energy is given by

Ψ(E) =
λ

2
(tr (E))

2
+ µtr

(
E2
)

(1.183)

where λ and µ are the Lamé constants. From S = ∂Ψ
∂E we have the stress-strain

relation
S = λtr (E) I + 2µE (1.184)

Exercise Derive (1.184) by differentiation of Ψ in (1.183).

26 CHAPTER 1. TENSORS AND MECHANICS

1.3 Direction Derivatives

We wish to find a closed form formula for the directional derivative of deforma-
tion gradient. Let ~u 6= ~0 be some arbitrary direction

DF(~x)[~u] = lim
s→0

F(~x+ s~u)− F(~x)

s
(1.185a)

Recall that ~x = Φ(~X) and F = ∂~x

∂ ~X
= ∂Φ(~X)

∂ ~X
so

F(~x+ s~u) =
∂Φ(Φ−1(~x+ s~u))

∂ ~X
=
∂(~x+ s~u)

∂ ~X
(1.186)

Then

DF(~x)[~u] = lim
s→0

∂(~x+s~u)

∂ ~X
− ∂Φ(~x)

∂ ~X

s
(1.187a)

= lim
s→0

∂~x

∂ ~X
+ s ∂~u

∂ ~X
− ∂~x

∂ ~X

s
(1.187b)

=
∂~u

∂ ~X
(1.187c)

Using the chain rule we may rewrite

DF(~x)[~u] =
∂~u

∂ ~X
=
∂~u

∂~x

∂~x

∂ ~X
= (∇~u)F (1.188)

Observe that if ~u is considered to be a function of ~X and not ~x then we write

~u0 = ~u(~X) (1.189)

and then we have

DF(~x)[~u0] =
∂~u0

∂ ~X
= ∇0~u0 (1.190)

The directional derivative of the Green strain tensor. By definition we have

E =
1

2

(
FTF− I

)
(1.191)

so

DE(~x)[~u] =
1

2

(
DF(~x)[~u]TF + FTDF(~x)[~u]

)
(1.192a)

=
1

2
FT

(
∂~u

∂ ~X

T

+
∂~u

∂ ~X

)
F (1.192b)

= FT εF (1.192c)

1.4. SUMMARY 27

The directional derivative of second Piola—Kirchhoff stress tensor. We know

DS(~x)[~u] = D (S(E(~x))) [~u] (1.193a)

From the chain rule we have

DSIJ(~x)[~u] =

3∑
K=1

3∑
L=1

∂SIJ(~x)

∂EKL
DEKL(~x)[~u] (1.194a)

That is
DS(~x)[~u] = C(~x) : DE(~x)[~u] (1.195)

where the fourth order tensor C is given as

C(~x) =
∂S(~x)

∂E
(1.196)

We know that the partial derivative of the strain energy gives us the stress tensor

S =
∂ψ

∂E
= 2

∂ψ

∂C
(1.197)

So that means

C =
∂S

∂E
= 2

∂2ψ

∂C∂E
= 4

∂2ψ

∂C∂C
(1.198)

Or in index notation

CIJKL =
4∂2ψ

∂CIJ∂CKL
= CKLIJ (1.199)

1.4 Summary

We have introduced tensor algebra and calculus and shown how to apply these
as a mathematical framework for continuum mechanics. In particular we have
derived several strain and stress tensors as well as the equation of motion. Fi-
nally, we have explored some formulas for directional derivatives that will be
helpful in later texts.

28 CHAPTER 1. TENSORS AND MECHANICS

Chapter 2

Time Integration

2.0.1 Time Discretization

The finite element method resulted in the second order differential equation

M~̈x+ C~̇x+ K~u = ~f. (2.1)

We have dropped the tilde notation to make things more readable. We will now
discretize time using finite difference approximations. First we observe that
time derivative of the velocity is the acceleration, ~̇v = ~̈x, and so using first order
Euler,

~̇v ≈ ~vt+∆t − ~vt

∆t
, (2.2)

and
~xt+∆t ≈ ~xt + ∆t~vt+∆t. (2.3)

Substituting the finite difference approximations we have

M
~vt+∆t − ~vt

∆t
+ K

(
~xt+∆t − ~X

)
+ C~vt+1 = ~f. (2.4)

Further manipulation

M~vt+∆t −M~vt + ∆tK
(
~xt + ∆t~vt+∆t − ~X

)
+ ∆tC~vt+1 = ∆t ~f.

(2.5)

Finally
A~vt+∆t = ~b, (2.6)

where

A = M + ∆tC + ∆t2K, (2.7a)

~b = M~vt + ∆t
(
~f −K~xt + ~f0

)
. (2.7b)

29

30 CHAPTER 2. TIME INTEGRATION

Here we have introduced ~f0 = K ~X. The A matrix is sparse block symmetric
and positive definite matrix. Thus, the linear system can be solved effectively
using a numerical method such as the conjugate gradient method. Having found
~vt+∆t we may do the position update

~xt+∆t = ~xt + ∆t~vt+∆t. (2.8)

2.0.2 Time Discretization

We may rewrite the second order differential equation into a system of coupled
first order differential equations

~̇x = ~v, (2.9a)

M~̇v + C~v + ~k(~x− ~X) = ~f, (2.9b)

where we have dropped the tilde notation for sake of readability. Using finite
differencing we can discretize the time derivatives. Here we will consider first
order approximations only. At one extreme we may take all terms to be explicit,

~xt+∆t = ~xt + ∆t~vt, (2.10a)

~vt+∆t = ~vt + ∆tM−1
(
~f −C~vt − ~k(~xt − ~X)

)
. (2.10b)

Here superscript denotes the time. In computer graphics it is often the case
that the elastic forces should be treated explicitly whereas the position update
should be treated implicitly. In this case a semi implicit time integration method
results as

~vt+∆t = ~vt + ∆tM−1
(
~f −C~vt − ~k(~xt − ~X)

)
, (2.11a)

~xt+∆t = ~xt + ∆t~vt+∆t. (2.11b)

For stiff materials the explicit update rules may require very small time steps to
be stable. To counter this we may make a full implicit scheme.

M
(
~vt+∆t − ~vt

)
−

∆t
(
~f + C~vt+∆t + ~k(~xt+∆t − ~X)

)
= ~0

(2.12)

and
~xt+∆t − ~xt −∆t~vt+1 = ~0. (2.13)

The details of the implicit method are treated in depth in [Erleben(2011b)].
What remains to be dealt with is an efficient way to compute the ~ke term. We
have already derived the equation for the ~kea term

~kea(~ue) =

∫
V e

P∇0NadV. (2.14)

2.1. NEWMARK TIME INTEGRATION 31

By definition of the deformation gradient and using our shape functions we find

F(~X) =
∑
a∈e

~xa ⊗∇0Na(~X). (2.15)

Knowing F we may compute C = FTF and from this we find S = 2 ∂Ψ
∂C and

finally we may compute P = FS. In the case of using linear shape functions
for a tetrahedral mesh element we know that ∇0Na(~X) is constant over the
whole element and so Fe is a constant per element, this implies Ce is a constant
and that Se and finally Pe are constants too. In this case our integral gives the
closed form solution,

~kea(~ue) = V eFeSe∇0Na. (2.16)

If non-linear shape functions were used then it might not be possible to derive
a nice closed form solution and a numerical approach like quadrature must be
used instead.

2.1 Newmark Time Integration

The equations of motion for non-linear elasticity can be written as

M~̈u+ C~̇u+ ~k(~u) = ~f. (2.17)

where we used ~x = ~X + ~u to replace ~x with ~u. For simplicity we will as-
sumed that ~f has little time dependency so it can be viewed as a constant force
in the following. In Newmark’s approach [Newmark(1959), Wriggers(2002),
Quek and Liu(2003)] we start by the Taylor series expansions of ~ut+∆t and
~̇ut+∆t around t,

~ut+∆t = ~ut + ∆t ~̇ut +
1

2
∆t2 ~̈ut +

1

6
∆t2

...
~u
t

+O(∆t4) (2.18a)

~̇ut+∆t = ~̇ut + ∆t ~̈ut +
1

2
∆t2

...
~u
t

+O(∆t3) (2.18b)

which can be truncate and expressed as

~ut+∆t ≈ ~ut + ∆t ~̇ut +
1

2
∆t2 ~̈ut + β∆t3

...
~u (2.19a)

~̇ut+∆t ≈ ~̇ut + ∆t ~̈ut + γ∆t2
...
~u (2.19b)

If the acceleration is assumed to be linear within the time step then

...
~u =

~̈ut+∆t − ~̈ut

∆t
(2.20)

Substitution into the Taylor approximations yields the update rules

~ut+∆t = ~ut + ∆t ~̇ut + ∆t2
((

1

2
− β

)
~̈ut + β ~̈ut+∆t

)
(2.21a)

~̇ut+∆t = ~̇ut + ∆t
(

(1− γ) ~̈ut + γ ~̈ut+∆t
)

(2.21b)

32 CHAPTER 2. TIME INTEGRATION

Newmark showed that a reasonable value of γ is 1
2 . A typical setting of β is 1

4
which yields the constant average acceleration method. Next we substitute the
update rules into the equations of motion.

M~̈ut+∆t + C~̇ut+∆t + ~k(~ut+∆t) = ~f. (2.22)

and get

M~̈ut+∆t + C
(
~̇ut + ∆t

(
(1− γ) ~̈ut + γ ~̈ut+∆t

))
+ ~k

(
~ut + ∆t ~̇ut + ∆t2

((
1

2
− 1β

)
~̈ut + β ~̈ut+∆t

))
= ~f.

(2.23)

This equation forms the basis for the time discretization. We will next consider
how to compute the values at t + ∆ using this equation as our building block.
First we consider the linear case afterwards we consider the non-linear case.

2.1.1 The Linear Case

For the particular case of linear elasticity we have ~k(~u) = K~u using this and
rearranging the equation yields

Anew~̈u
t+∆t = ~bnew (2.24)

where
Anew = M + γ∆tC + β∆t2K (2.25)

and

~bnew = ~f −K
[
~ut + ∆t ~̇ut +

(
1
2 − β

)
∆t2 ~̈ut

]
−C

[
~̇ut + (1− γ) ∆t ~̈ut

] (2.26)

When Newmark integration is applied then one performs the steps

Step 1 one is given ~ut and ~̇ut as initial conditions

Step 2 From the equations of motion one can compute ~̈ut by solving

M~̈ut = ~f −C~̇ut −K~ut (2.27)

Step 3 Setup Anew and ~bnew and solve for ~̈ut+∆t

Step 4 Apply the update rules to compute ~ut+∆t and ~̇ut+∆t.

Step 5 If time integration not finished then goto step 1 otherwise halt.

2.1. NEWMARK TIME INTEGRATION 33

The time integration is unconditional stable if γ ≥ 1
2 and β ≥ 1

16 (2γ + 1)
2. The

unconditional nature allows for larger time steps when the external forces are
of slow time variation.

Let us take another approach. We may rewrite the first update rule as follows

~̈ut+∆t = b1
(
~ut+∆t − ~ut

)
+ b2 ~̇u

t + b3 ~̈u
t (2.28)

where

b1 =
1

β∆t2
, (2.29a)

b2 = − 1

β∆t
, (2.29b)

b3 = −
(

1
2 − β

)
β

. (2.29c)

Now we may rewrite the second update rule by substituting the result of the
rewrite of the first update rule

~̇ut+∆t = b4
(
~ut+∆t − ~ut

)
+ b5 ~̇u

t + b6 ~̈u
t (2.30)

where

b4 = ∆t γ b1,=
γ

∆tβ
(2.31a)

b5 = ∆t γ b2 + 1,=

(
1− γ

β

)
(2.31b)

b6 = ∆t (1 + γ b3 − γ) = ∆t

(
1− γ

2β

)
. (2.31c)

With these modified update rules we make the substitution into the equations
of motion

M
(
b1
(
~ut+∆t − ~ut

)
+ b2 ~̇u

t + b3 ~̈u
t
)

+ C
(
b4
(
~ut+∆t − ~ut

)
+ b5 ~̇u

t + b6 ~̈u
t
)

+ K~ut+∆t = ~f.

(2.32)

We may now collect the unknown terms ~ut+∆t on the left hand side to yield

Anew2~u
t+∆t = ~bnew2 (2.33)

where
Anew2 = (b1 M + b4 C + K) (2.34)

and

~bnew2 = ~f + M
(
b1 ~u

t − b2 ~̇ut − b3 ~̈ut
)

+ C
(
b4 ~u

t − b5 ~̇ut − b6 ~̈ut
) (2.35)

34 CHAPTER 2. TIME INTEGRATION

With the modifications in place we can now phrase the modified Newmark in-
tegration method as follows

Step 1 one is given ~ut and ~̇ut as initial conditions

Step 2 From the equations of motion one can compute ~̈ut by solving

M~̈ut = ~f −C~̇ut −K~ut (2.36)

Step 3 Setup Anew2 and ~bnew2 and solve for ~ut+∆t

Step 4 Apply the update rules (2.28) and (2.30) to compute ~̇ut+∆t and ~̈ut+∆t.

Step 5 If time integration not finished then goto step 3 otherwise halt.

2.1.2 The Non-linear Case

Let us substitute the modified Newmark update rules into the non-linear version
of the equations of motion

~Φnew
(
~ut+1

)
≡M

(
b1
(
~ut+∆t − ~ut

)
+ b2 ~̇u

t + b3 ~̈u
t
)

+ C
(
b4
(
~ut+∆t − ~ut

)
+ b5 ~̇u

t + b6 ~̈u
t
)

+ ~k(~ut+∆t)− ~f = ~0

(2.37)

This is a non-linear equation and a root search problem which can be solved
using a non-linear Newton method. That is In the kth iteration we are seeking
∆~uk such that we can make the Newton update

~uk+1 = ~uk + ∆~uk. (2.38)

We want ∆~uk to be such that

~Φnew
(
~uk+1

)
= ~Φnew

(
~uk + ∆~uk

)
= ~0. (2.39)

Now making a first order Taylor series approximation around ~uk yields

~Φnew
(
~uk + ∆~uk

)
≈ ~Φnew

(
~uk
)

+
∂~Φnew

(
~uk
)

∂~ut+1
∆~uk (2.40)

The partial derivative is given by

Jknew ≡
∂~Φnew

(
~uk
)

∂~ut+1
= b1M + b4C +

∂~k
(
~uk
)

∂~ut+1︸ ︷︷ ︸
Kk

= b1M + b4C + Kk.

(2.41)

2.1. NEWMARK TIME INTEGRATION 35

Here we have used superscript to make dependence on iteration ~uk more clear.
Finally we can state the Newton system

Jknew∆~uk = −~Φknew. (2.42)

We can now put all pieces together and summarize the implicit Newmark time
integration method as follows.

01 : Algorithm implicit-newmark-time-step(M,C, ~ut, ~̇ut, . . .)

02 : ~k ← 1

03 : (~uk, ~̇uk)← (~ut, ~̇ut)

04 : ~̈ut ←M−1
(
~f − ~k(~ut)−C~̇ut

)
05 : while not converged
06 : Kk ← assemble from ∂~ke

∂~ue

07 : Jknew ← b1M + b4C + Kk

08 : ~r ← −~Φknew

09 : ∆~uk ←
(
Jknew

)−1
~r

10 : τk ← do-line-search
11 : ~uk+1 ← ~uk + τk∆~uk

12 : k ← k + 1
13 : End while
14 : ~ut+∆t = ~uk

15 : ~̇ut+∆t = b4
(
~ut+∆t − ~ut

)
+ b5 ~̇u

t + b6 ~̈u
t

16 : ~̈ut+∆t = b1
(
~ut+∆t − ~ut

)
+ b2 ~̇u

t + b3 ~̈u
t

17 : (~xt+1, ~vt+1)← (~X + ~uk, ~̇ut+1)
18 : End algorithm

Observe we added a line-search to globalize the Newton method. The stoping
criteria can be as simple as a maximum iteration count on k and a tolerance
threshold on the residual ~r. In [Erleben(2011b)] and [Erleben(2011d)] more
details can be found on stopping criteria, line-search method and initial param-
eter values.

2.1.3 Full Implicit Backward Euler Time Integration

We may rewrite the second order differential equation into a system of coupled
first order differential equations

~̇x = ~v, (2.43a)

M~̇v + C~v + ~k(~x− ~X) = ~f. (2.43b)

Using finite differencing we can discretize the time derivatives. In computer
graphics it is often the case that the elastic forces should be treated explicitly
whereas the position update should be treated implicitly as shown in [Erleben(2011a)].

36 CHAPTER 2. TIME INTEGRATION

For stiff materials the explicit update rule may require very small time steps to
be stable. To counter this we make a full implicit scheme

~xt+∆t − ~xt −∆t~vt+1 = ~0, (2.44)

and

M
(
~vt+∆t − ~vt

)
+

∆t
(
C~vt+∆t + ~k(~xt+∆t − ~X)− ~f

)
= ~0

(2.45)

where superscript denotes the time. The implicit update rules above are equiv-
alent to the root search problem

~Φ(~x,~v) =

[
~Φx(~x,~v)
~Φv(~x,~v)

]
= ~0, (2.46)

where

~Φx(~x,~v) = ~x− ~xt −∆t~v, (2.47a)
~Φv(~x,~v) = (M + ∆tC)~v −M~vt −∆t ~f + ∆t~k(~x− ~X). (2.47b)

A solution ~x∗ and ~v∗ for the root search problem corresponds to the updates we
are looking for. That is ~x∗ = ~xt+∆t and ~v∗ = ~vt+∆t. A non-linear root search
problem can be solved using Newtons method [Nocedal and Wright(1999)].
That is in the kth iteration of the Newton method one makes the first order
approximation around the kth values resulting in the kth Newton system

~Φ(~xt+∆t, ~vt+∆t) ≈ ~Φ(~xk, ~vk)

+
∂~Φ(~xk, ~vk)

∂~x
∆~xk

+
∂~Φ(~xk, ~vk)

∂~v
∆~vk = 0

(2.48)

that is solved for the kth Newton direction (∆~xk,∆~vk) which is then used in the
kth Newton update

~xk+1 = ~xk + τk∆~xk, (2.49a)

~vk+1 = ~vk + τk∆~vk. (2.49b)

We introduced the kth step length τk that tells how far along the Newton direc-
tion one should step. A line search method can be used to determine τk this
results in a damped Newton method [Nocedal and Wright(1999)]. Initially for
k = 1 we take ~xk = ~xt and ~vk = ~vt. The first order approximation is unlikely
to yield a solution in one step, so often several iterations is taken until some
sufficient stopping criteria is meet.

2.1. NEWMARK TIME INTEGRATION 37

We can derive closed-form solutions for the Jacobians to be

∂~Φ

∂~x
=

[
I

∆t ∂
~k
∂~u

]
, (2.50a)

∂~Φ

∂~v
=

[
−∆tI

M + ∆tC

]
. (2.50b)

Using our formulas for the Jacobians we can write the Newton system compactly
as [

I −∆tI

∆t ∂
~k
∂~u (M + ∆tC)

] [
∆~xk

∆~vk

]
=

[
−~Φx(~xk, ~vk)

−~Φv(~xk, ~vk)

]
. (2.51)

Observe that the diagonal blocks are trivially invertible so a Shur complement
method [Saad(2003)] seems appropriate to solve for the Newton direction.
From the first row of the Newton system we obtain

∆~xk = ∆t∆~vk − ~Φx(~xk, ~vk). (2.52)

Kenny Says: Sifakis Siggraph 2012 notes takes a different approach on this.
Clearly the Taylor series approximation for the positional parts yields ~Φk+1

x ≈
~Φkx +

∂Φkx
∂~x ∆~xk +

∂Φkx
∂~v ∆~vk = ~0. This combined with some rearranging yields

~xk − ~xt −∆t~vk + ∆~xk −∆t∆~vk = ~0 (2.53a)(
~xk + ∆~xk

)
− ~xt −∆t

(
~vk + ∆~vk

)
= ~0 (2.53b)

~Φk+1
x = ~0 (2.53c)

Hence the linearization of ~Φk+1
x = ~0 around (~xk, ~vk) gives ~Φk+1

x ≈ ~Φk+1
x = ~0.

This must hold for all k > 1 (What about k = 1?). Hence we have ~Φkx = ~0,
~Φk−1
x = ~0 and so. Now we subtract

~Φk+1
x − ~Φkx = ~0 (2.54)

which after some simple algebra results in the relation

∆~xk = ∆t∆~vk (2.55)

This is different from (2.52). Why is this so? For k = 1 we have ~Φ1
x = ~xt − ~xt −

∆t~vt = −∆t~vt. Clearly this will be non-zero if ~vt is non-zero? Discussion: Of
course one is free to pick any starting iterate value ~v1. Hence, one can just think
of the numerical scheme as picking a suitable starting iterate ~v1 such that ~Φ1

x is
zero.

Substitution into the second row gives the final system for the kth velocity
update(

M + ∆tC + ∆t2
∂~k

∂~u

)
︸ ︷︷ ︸

A

∆~vk = ∆t
∂~k

∂~u
~Φx(~xk, ~vk)− ~Φv(~xk, ~vk)︸ ︷︷ ︸

~b

. (2.56)

38 CHAPTER 2. TIME INTEGRATION

Kenny Says: Again comparing with Sifakis 2012 Siggraph notes. If we sub-
stituted ∆~xk = ∆t∆~vk instead and solved for ∆~xk then we would obtain the
linear system (

1

∆t2
M +

1

∆t
C +

∂~k

∂~u

)
︸ ︷︷ ︸

A

∆~xk = − 1

∆t
~Φv(~x

k, ~vk)︸ ︷︷ ︸
~b

. (2.57)

This is almost the same linear system as we have. Except it is divided by the 1
∆t2

and the term ~Φkx has been dropped from the right hand side vector.
If we consider the construction of the matrices in this equation then we

observe that we already know how to build most terms except for the ∂~k
∂~u term.

This term is called the tangent stiffness matrix term.
We now sketch a pseudo code version of the implicit time step method of

the non-linear finite element method.

01 : Algorithm implicit-time-step(M,C, ~xt, ~vt, . . .)

02 : ~k ← 1
03 : (~xk, ~vk)← (~xt, ~vt)
04 : while not converged
05 : K← assemble from ∂~ke

∂~ue

06 : A←M + ∆tC + ∆t2K

07 : ~b← ∆t ∂
~k
∂~u
~Φx(~xk, ~vk)− ~Φv(~xk, ~vk)

08 : ∆~vk ← A−1~b

09 : ∆xk ← ∆t∆~vk − ~Φx(~xk, ~vk)
10 : τk ← do-line-search
11 : ~xk+1 ← ~xk + τk∆~xk

12 : ~vk+1 ← ~vk + τk∆~vk

13 : k ← k + 1
14 : End while
15 : (~xt+1, ~vt+1)← (~xk, ~vk)
16 : End algorithm

Observe that the global mass and damping matrices M and C can be assembled
once prior to simulation whereas the global tangent stiffness matrix must be
re-evaluated and re-assembled in each iteration of the Newton method (line
05). The right hand side vector ~b depends directly on the values ~xk and ~vk

and must therefore be re-evaluated in each iteration (line 07). Rather than
solving the velocity update (line 08) using a direct method one may apply an
iterative method. If the global tangent stiffness matrix is symmetric then A will
be a symmetric positive definite matrix and a conjugate gradient method may
be used. The M matrix could be a good candidate for a preconditioner. This
would correspond to a time constant A matrix with ∆t = 0.

If an iterative solver is used then one often only need to evaluate the value
of A multiplied by a vector. One does not need to assemble the A matrix in

2.2. SUMMARY 39

order to evaluate the matrix-vector product. A matrix-free solution can be used
instead. This is elaborated on in Appendix A.2.

2.2 Summary

40 CHAPTER 2. TIME INTEGRATION

Chapter 3

Hyper Elasticity for Small and
Large Deformations based on
a Lagrangian Formulation

The corotational linear finite element method (FEM) is a popular choice for
interactive simulations in the field of computer graphics. The method provides
a nice tradeoff between computational cost and animation quality. This paper
will give a rigorous derivation of this method with focus on the physical laws,
and the assumptions and discretization that lie behind. The contribution lies
mostly in the presentation and can hopefully be beneficial to those who wish
to understand the degree of physical correctness of the method. Following this
we extend the governing model to large displacements and derive a non-linear
finite element method for this case. Finally, we make the connection to the finite
volume method (FVM) for hyper elastic materials with large displacements.

3.1 Introduction

Deformable models cover a wide range of simulations from solids, shells, rods,
wires to cloth and hair [Baraff and Witkin(1998), Bridson et al.(2002)Bridson, Fedkiw, and Anderson,
Grinspun(2006), Selle et al.(2008)Selle, Lentine, and Fedkiw, Bergou et al.(2008)Bergou, Wardetzky, Robinson, Audoly, and Grinspun].
The methods range from physical based to more ad hoc or geometry inspired
methods [Müller et al.(2005)Müller, Heidelberger, Teschner, and Gross, Choi and Ko(2005),
Botsch et al.(2006)Botsch, Pauly, Gross, and Kobbelt]. In this paper we wish to
focus on fast methods that can handle real solid materials undergoing large de-
formations. Thus, we focus only on work relevant to physical based simulation
of solids. Other interactive works are not well suited for accurate material simu-
lation such as the versatile method and position-based physics [Teschner et al.(2004)Teschner, Heidelberger, Muller, and Gross,
Müller et al.(2007)Müller, Heidelberger, Hennix, and Ratcliff] as one can not eas-
ily model real materials with those works.

41

42 CHAPTER 3. LAGRANGIAN FORMULATIONS

Initial work on deformable models in computer graphics were based on finite
difference methods and differential geometry measures such as first and second
fundamental forms [Terzopoulos et al.(1987)Terzopoulos, Platt, Barr, and Fleischer].
Green strain and Piola–Kirchhoff stress tensors are often applied for offline ani-
mation methods [Debunne et al.(2001)Debunne, Desbrun, Cani, and Barr, O’Brien and Hodgins(1999),
Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw, Teran et al.(2005b)Teran, Sifakis, Irving, and Fedkiw,
Barbič and James(2005), Irving et al.(2007)Irving, Schroeder, and Fedkiw, Bargteil et al.(2007)Bargteil, Wojtan, Hodgins, and Turk].
Whereas the corotational linear finite element method based on Cauchy strain
and stress tensors is often favored for interactive animation [Müller et al.(2002)Müller, Dorsey, McMillan, Jagnow, and Cutler,
Müller and Gross(2004), Galoppo et al.(2007)Galoppo, Otaduy, Tekin, Gross, and Lin,
Galoppo et al.(2009)Galoppo, Otaduy, Moss, Sewall, Curtis, and Lin, Wicke et al.(2010)Wicke, Ritchie, Klingner, Burke, Shewchuk, and O’Brien,
Zhu et al.(2010)Zhu, Sifakis, Teran, and Brandt]. It is mostly finite element meth-
ods that have been used and are in our view considered the dominating meth-
ods. Hence our focus is on this group of methods. [Sarah F. F. Gibson(1997)]
contains an early survey outlining the linear elastic finite element method for
small displacements. A more recent survey can be found in[Nealen et al.(2006)Nealen, Müller, Keiser, Boxerman, and Carlson]
which covers most of the basic theory, but only few details on the non-linear/large
deformation case is given.

There are many books on the subject of continuum mechanics [Chadwick(1999),
Spencer(2004), Reddy(2008)] and [Lai et al.(2009)Lai, Rubin, and Krempl] as
well as books about the finite element method [Zienkiewicz and Taylor(2000),
Bonet and Wood(2000), Cook et al.(2007)Cook, Malkus, Plesha, and Witt]. These
books provide in depth detail on the non-linear behavior for large deformations.
The learning curve for non-specialists is high and it is not always obvious how
pieces and arguments fit together. This has motivated the writing of a series
of technical reports addressing the usage of finite element method in computer
graphics including this paper and [Erleben(2011b)].

We develop the corotational finite element method in Section 3.2 following
this we extend to the non-linear case in Section 3.3 and finally show the finite
volume method alternative in Section 3.4. The reader may consult Appendix A.1
for details and refreshing of mathematical details.

3.2 The Corotational Linear Elastic Finite Element
Method

We have an elastic solid defined in a fixed constant reference frame called the
material coordinates ~X. The material coordinates are then deformed into spa-
tial coordinates ~x by the spatial temporal deformation ~x = Φ(~X, t). By conven-
tion we think of material coordinates as the spatial coordinates at time t = 0.
That is ~X = Φ(~X, 0). The material volume of the solid is denoted by V and
the spatial volume by v. The boundary of the solid is denoted by ∂V and ∂v in
material and spatial coordinates, respectively. Our problem is now to develop a
numerical method for computing the spatial coordinates ~x at some given future
time t knowing only the initial state at time t = 0.

3.2. THE COROTATIONAL LINEAR ELASTIC FINITE ELEMENT METHOD 43

We will solve our problem by applying a finite element method to a physical
model of an elastic solid. In order to do so we must first rewrite our model
problem into volume integral formulation which we convert into a weak form.
Once the weak form is obtained we substitute our discretization, represented by
our shape functions, into the weak form integrals. The end result of the finite
element method is a time dependent matrix equation, an ordinary differential
equation. Hereafter we apply finite difference method to discretize the time
dependent variables. This final step leads to the final numerical method for our
problem.

It may be worthwhile to refresh most of the basic math in Appendix A.1.1
prior to reading the remainder of the paper.

3.2.1 The Physical Model

From the Cauchy equation we get the continuum mechanics equivalent of New-
tons second law at some spatial point ~x

ρ~̈x = ∇ · σ +~b, (3.1)

where ~b represents any body force density we wish to use, ρ is spatial mass
density, and σ is the Cauchy stress tensor as defined by Cauchy’ stress hypothesis

~t = σ~n, (3.2)

where ~n is an unit normal vector of a plane and ~t is the corresponding traction
on the plane. Conservation of angular momentum implies that the Cauchy stress
tensor is a symmetric tensor.

σT = σ. (3.3)

We write a model of our problem as

ρ~̈x = ∇ · σ +~b, ∀~x ∈ v, (3.4a)
~t = σ~n, ∀~x ∈ ∂vt. (3.4b)

Here ∂vt ⊆ ∂v is the subset of the boundary were a known non-zero surface
traction is applied. This could in principle be some contact stress from some
interaction.

3.2.2 Weak Form Reformulation

We cast our model into a volume integral by integrating over the material vol-
ume V while multiplying our momentum equation with an admissible test func-
tion ~w. Observe in the following that quantities are taken to be functions of
material coordinates. That is ρ(~X, t), σ(~X, t), ~b(~X, t), ~t(~X, t) and so on. We
refer to Appendix A.1.2 for details. On a side note if we think of ~w as a spatial

44 CHAPTER 3. LAGRANGIAN FORMULATIONS

virtual displacement then the rewrite is equivalent to stating the principle of
virtual work. Our volume integral reads∫

V

(
ρ~̈x−∇ · σ −~b

)
· ~wdV = 0 (3.5)

which we split into terms

0 =

∫
V

ρ~̈x · ~wdV −
∫
V

(∇ · σ) · ~wdV −
∫
V

~b · ~wdV. (3.6)

Next step involves the tensor equivalent of the product rule for the term ∇ ·
(σ ~w) = (∇ · σ) · ~w + σ : ∇~wT (1),

0 =

∫
V

ρ~̈x · ~wdV +

∫
V

σ : ∇~wdV

−
∫
V

∇ · (σ ~w)dV −
∫
V

~b · ~wdV,
(3.7)

here we used the fact that σ is symmetric. Next we apply the Gauss divergence
theorem to rewrite the volume integral of ∇ · (σ ~w) and use (3.2),∫

V

∇ · (σ ~w)dV =

∫
∂V

(σ ~w) · ~ndS, (3.8a)

=

∫
∂V

~w · (σ~n)dS, (3.8b)

=

∫
∂V

~t · ~wdS, (3.8c)

=

∫
∂Vt

~t · ~wdS. (3.8d)

In the final step we have applied our boundary condition σ~n = ~t on ∂Vt so ~t = 0
everywhere else. For convenience and readability we introduce the symbols

Pρ =

∫
V

ρ~̈x · ~wdV, (3.9a)

Pe =

∫
V

σ : ∇~wdV, (3.9b)

Pt = −
∫
∂Vt

~t · ~wdS, (3.9c)

Pb = −
∫
V

~b · ~wdV. (3.9d)

We now have
0 = Pρ + Pe + Pt + Pb. (3.10)

1The double contraction between two second order tensors A and B is defined as A : B =∑
j

∑
i AijBij as explained in Appendix A.1.1

3.2. THE COROTATIONAL LINEAR ELASTIC FINITE ELEMENT METHOD 45

For now we will consider free floating objects so Pt = 0. Further, we will use a
viscous damping as our body forces. This means,

Pb = −
∫
V

−c~̇x · ~wdV =

∫
V

c~̇x · ~wdV (3.11)

where c > 0 is a viscous damping coefficient. The virtual elastic energy term is
given as

Pe =

∫
V

σ : ∇~wdV. (3.12)

Since the Cauchy stress tensor is symmetric we have

Pe =

∫
V

σ :
1

2

(
∇~w +∇~wT

)
dV. (3.13)

Recall the infinitesimal strain tensor is by definition given as (see Appendix A.1.3)

ε =
1

2

(
∇~u+∇~uT

)
, (3.14)

so we define

εw =
1

2

(
∇~w +∇~wT

)
. (3.15)

That means using the virtual infinitesimal stress tensor we have

Pe =

∫
V

σ : εwdV. (3.16)

3.2.3 The Constitutive Equation

For linear elasticity in the infinitesimal strain limit the stress strain relation
comes form σ = ∂Ψ

∂ε where Ψ is the strain energy function per unit initial vol-
ume and ε is the infinitesimal strain tensor called the Cauchy stress tensor. It is
defined as

ε =
1

2
(∇~u+∇~uT), (3.17)

where ~u = ~x− ~X is known as the displacement field. In case of isotropic linear
elastic (compressible Neo–Hookean) solids the strain energy function is given
as

Ψ =
λ

2
tr (ε)

2
+ µε : ε, (3.18)

where λ and µ are the Lamé constants. Thus, the stress strain relation has the
form

σ = λtr (ε) I + 2µε. (3.19)

46 CHAPTER 3. LAGRANGIAN FORMULATIONS

Writing out each components of the Cauchy stress tensor yields

σxx = λ (εxx + εyy + εzz) + 2µεxx, (3.20a)

σyy = λ (εxx + εyy + εzz) + 2µεyy, (3.20b)

σzz = λ (εxx + εyy + εzz) + 2µεzz, (3.20c)

σxy = 2µεxy, (3.20d)

σxz = 2µεxz, (3.20e)

σyz = 2µεyz. (3.20f)

This can be written in matrix form by defining the vectors

~σ =
[
σxx σyy σzz σxy σxz σyz

]T
(3.21)

and
~ε =

[
εxx εyy εzz 2εxy 2εxz 2εyz

]T
(3.22)

then 
σxx
σyy
σzz
σxy
σxz
σyz

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




εxx
εyy
εzz

2εxy
2εxz
2εyz

 . (3.23)

In terms of Youngs moduls E and Poisson ratio ν the Lamé constants are

λ =
Eν

(1 + ν)(1− 2ν)
, (3.24a)

µ =
E

2(1 + ν)
. (3.24b)

Using the above relation we get the final form of the constitutive equation that
we will use,

~σ = D~ε (3.25)

where

D =
E

(1 + ν)(1− 2ν)


d0 d1 d1 0 0 0
d1 d0 d1 0 0 0
d1 d1 d0 0 0 0
0 0 0 d2 0 0
0 0 0 0 d2 0
0 0 0 0 0 d2

 (3.26)

and

d0 = (1− ν), (3.27a)

d1 = ν, (3.27b)

d2 =
(1− 2ν)

2
. (3.27c)

3.2. THE COROTATIONAL LINEAR ELASTIC FINITE ELEMENT METHOD 47

3.2.4 The Finite Element Discretization

Putting it together and changing from tensor notation to matrix (Voigt) notation
our weak form integrals now reads

Pe =

∫
V

~σ · ~εwdV =

∫
V

~εTwD~εdV. (3.28)

Thus, our mathematical model can be stated as

0 = Pρ + Pe + Pb. (3.29)

We have applied continuum mechanics to develop formulas for the terms above.
Our final versions are,

Pρ =

∫
V

ρ~̈x · ~wdV, (3.30a)

Pe =

∫
V

~εTwD~εdV, (3.30b)

Pb =

∫
V

c~̇x · ~wdV. (3.30c)

Now we have reached the point where we wish to discretize our model using
our shape functions.

3.2.5 Shape Functions

We let ~x and ~u be defined at the nodes of a tetrahedral mesh and use the tetra-
hedra as our finite elements. Notice a volume integral over the solid can be
written as a sum of element wise volume integrals∫

V

(. . .)dV =
∑
e

∫
V e

(. . .)dV. (3.31)

We use this with out loss of generality to simplify our equations by only con-
sidering one tetrahedral element in our derivations. We used e to label the
tetrahedral elements. The process represented by the above equation is known
as the assembly process.

Now if we have a point ~X inside a tetrahedron with nodal labels i, j, k, and
m then we may interpolate values at this point using linear shape functions.
That is

~X = Ni ~Xi +Nj ~Xj +Nk ~Xk +Nm ~Xm, (3.32)

~u = Ni~ui +Nj~uj +Nk~uk +Nm~um, (3.33)

where the Na’s for a ∈ e ≡ {i, j, k,m} are the barycentric/volume coordinates
of the point ~X with respect to the eth tetrahedron. These interpolation weights

48 CHAPTER 3. LAGRANGIAN FORMULATIONS

are equivalent with the local hat functions. They are easily computed from
geometry as

Ni =
Vjkm
V e

(3.34a)

=
(~X − ~Xj) · ((~Xk − ~Xj)× (~Xm − ~Xk))

(~Xm − ~Xi) · ((~Xj − ~Xi)× (~Xk − ~Xi))
(3.34b)

where ~V e is the tetrahedron material volume and Vjkm is the volume of the sub
tetrahedron spanned by ~X and the face with nodes j, k, andm. In particular the
material gradients of the weights are easily computed from the above formulas.

∇0Ni =
(~Xk − ~Xj)× (~Xm − ~Xk)

6V e
, (3.35)

Where ∇0 ≡ ∂

∂ ~X
=
[
∂X ∂Y ∂Z

]T
is the material gradient operator whereas

∇ ≡ ∂
∂~x =

[
∂x ∂y ∂z

]T
is the spatial gradient operator. Reexamining our

model equation we observe that the spatial gradients are used but integrals are
taken over material coordinates. Our assumption of infinitesimal displacements
means ~x ≈ ~X, ‖ ∇~u ‖� 1 and so it follows ∇0~u ≈ ∇~u. This means that we can
think of all spatial gradients as material gradients.

The idea is to replace field variables in our volume integrals with corre-
sponding interpolation formulas. These interpolation formulas are interpolat-
ing corresponding discrete nodal values from the computational mesh. For the
displacement field we have

~u ≈
∑

a∈{i,j,k,m}

Na~ua = Ne


~̃ui
~̃uj
~̃uk
~̃um

 = Ne~̃ue. (3.36)

Similar for ~w ≈ Ne ~̃we the spatial positions ~x ≈ Ne~̃xe. Where

Ne =
[
NiI NjI NkI NlI

]
and I =

1 0 0
0 1 0
0 0 1

 . (3.37)

Recall that the strain tensor was defined as ε = 1
2 (∇0~u+∇0~u

T) using our vector
notation and substituting our interpolation formulas

~ε ≈


∂X 0 0
0 ∂Y 0
0 0 ∂Z
∂Y ∂X 0
∂Z 0 ∂X
0 ∂Z ∂Y


︸ ︷︷ ︸

S

Ne~̃ue = SNe︸︷︷︸
Be

~̃ue = Be~̃ue, (3.38)

3.2. THE COROTATIONAL LINEAR ELASTIC FINITE ELEMENT METHOD 49

similar for the test strain ~εew ≈ Be ~̃we. Writing out we have

Be =
[
Be
i Be

j Be
k Be

m

]
(3.39)

where

Be
i =


∂XNi 0 0

0 ∂YNi 0
0 0 ∂ZNi

∂YNi ∂XNi 0
∂ZNi 0 ∂XNi

0 ∂ZNi ∂YNi

 . (3.40a)

Similar for Be
j , Be

k, and Be
m. Applying all approximations we have

Pρ = (~̃we)T
(∫

V e
ρ(Ne)TNedV

)
¨̃
~xe, (3.41a)

Pe = (~̃we)T
(∫

V e
(Be)TDBedV

)
~̃ue, (3.41b)

Pb = (~̃we)T
(∫

V e
c(Ne)TNedV

)
˙̃
~xe, (3.41c)

The equation Pρ + Pe + Pb = 0 must hold for arbitrary values of ~̃we so we end
up with

Me ¨̃
~xe + Ce ˙̃

~xe + Ke~̃ue = 0, (3.42)

where

Me =

∫
V e
ρ(Ne)TNedV, (3.43a)

Ce =

∫
V e
c(Ne)TNedV, (3.43b)

Ke =

∫
V e

(Be)TDBedV. (3.43c)

For computational efficiency one may apply mass lumping and similar for the
damping matrix. Summing up over all tetrahedra, the assembly process, we
have the global system

M
¨̃
~x+ C

˙̃
~x+ K~̃u = 0. (3.44)

If we had included gravity in the body forces or similar then we may add an
extra ~f term to the right hand side to account for this constant body force term.

Observe that the infinitesimal assumption allowed us to interchange spatial
gradients with material gradients. The consequence of this is basically that the
K matrix is a constant matrix and can be precomputed. Further, we observe
what would happen if we did not employ the infinitesimal assumption then we
had to use spatial gradients and K matrix would depend on the current spatial
coordinates.

50 CHAPTER 3. LAGRANGIAN FORMULATIONS

3.2.6 The Corotational Formulation

The infinitesimal assumptions implied that the element stiffness matrix Ke was
a constant matrix. If we dropped the assumptions then the matrix would be
a non-linear function of the current spatial coordinates. The elastic force term
would be given by Ke(~xe)~ue. The drawback is that the computational cost
increases drastically. Instead we seek a compromise that can approximate the
term Ke(~xe)~ue but stil have some of the computational advantages from the
constant matrix version.

The idea is that large deformations are due to the current spatial rotation.
To counter the large displacement effect of the spatial rotations the idea is to
rotate the spatial coordinates back into an unrotated frame before computing
the elastic forces. Finally the elastic forces are rotated back into the spatial
coordinates. Thus, we write

Ke(~xe)~ue ≈ OeKe
(

(Oe)T~xe − ~Xe
)
, (3.45)

where ~Oe is the block rotation matrix

Oe =


Re 0 0 0
0 Re 0 0
0 0 Re 0
0 0 0 Re

 (3.46)

and Re is the rotation matrix that “best” describes how the material coordinates
of the eth tetrahedron have been transformed into their current spatial coordi-
nates. In a least square error sense this could be understood as the problem

Re = arg min
R

∑
a={i,j,k,m}

‖ ~xa −R ~Xa ‖2 (3.47)

subject to the constraint
RTR = I. (3.48)

Rather than solving this constrained minimization problem one may exploit the
polar decomposition of the deformation gradient. In the following we will omit
the element superscript for readability.

The deformation gradient is defined as F = ∂~x

∂ ~X
and transforms material

vectors to spatial vectors. Thus, we define the edge vectors

~eab = ~xa − ~xb, (3.49a)
~Eab = ~Xa − ~Xb, (3.49b)

for all a 6= b and a, b ∈ {i, j, k,m}. By definition of the deformation gradient we
have

~eab = F ~Eab. (3.50)

3.3. THE NON-LINEAR FINITE ELEMENT METHOD FOR LARGE DISPLACEMENTS51

Now we pick three linear independent edge vectors and form the linear system[
~eji ~eki ~emi

]︸ ︷︷ ︸
E

= F
[
~Eji ~Eki ~Emi

]︸ ︷︷ ︸
E0

. (3.51)

The deformation gradient is then easily computed as

F = EE−1
0 . (3.52)

This can be done very efficiently as E−1
0 is defined in material coordinates and

can be computed and stored as a preprocessing step. There exists a polar de-
composition of the deformation gradient such that

F = RU, (3.53)

where R is an orthogonal matrix and U is a symmetric stretch matrix. From the
right Cauchy–Green strain tensor we have

C = FTF = U2. (3.54)

Performing eigenvalue decomposition of C we find the diagonal matrix Λ of
eigenvalues and Ω the orthogonal matrix of eigenvectors such that

C = ΩΛΩT (3.55)

so
U = Ω

√
ΛΩT . (3.56)

Finally we can compute R as

R = FU−1 = F
(√

Λ−1
)

ΩT . (3.57)

Before performing the velocity update by solving A~vt+∆t = ~b one must compute
Re for each tetrahedron according to the above equation and then update each
local stiffness element leading to

Ke′ = OeKe(Oe)T , (3.58a)
~fe
′

0 = OeKe ~Xe. (3.58b)

The primed quantities are now used in place of the unprimed quantities in the
assembly before computing the velocity update. Observe that a new assembly
process must be done as the first thing in each iteration of the simulation loop.

3.3 The Non-linear Finite Element Method for Large
Displacements

This section assumes that one is familiar with the weak form derivation (see
Section 3.2.2) as it is taken as ground truth and a lot of symbols are reused here
without being re-introduced.

52 CHAPTER 3. LAGRANGIAN FORMULATIONS

3.3.1 The Equations of Motion

The deformation gradient is defined as

F =
∂~x

∂ ~X
= ∇0~x = I +∇0~u, (3.59)

Observe that F−1 = ∂ ~X
∂~x . The determinant of the deformation gradient is written

as
j = det (F) . (3.60)

It is used when changing from material to spatial differential volume elements

dv = jdV. (3.61)

The Cauchy equation describes the motion of the whole solid and is written in
terms of the first Piola–Kirchhoff stress tensor as

ρ0~̈x = ~b0 +∇0 ·P, ∀ ~X ∈ V, (3.62)

where ρ0 is the material density and ~b0 is the material body force densities.
Often one apply the boundary condition,

PN = ~t, ∀ ~X ∈ ∂Vt, (3.63)

on the appropriate parts of ones solid surface. Here ~N is the outward unit
material normal on the surface boundary ∂Vt and ~t is some prescribed surface
traction. The boundary condition originates from the Cauchy stress hypothe-
sis. The relation between the first Piola–Kirchhoff stress tensor and the Cauchy
stress tensor is given as

P = jσF−T (3.64)

and the second Piola–Kirchhoff tensor is related as

S = jF−1σF−T . (3.65)

Combining those relations give us

P = FS. (3.66)

Isotropic hyper elasticity implies that we can write the second Piola–Kirchhoff
stress tensor as

S =
∂Ψ

∂E
= 2

∂Ψ

∂C
, (3.67)

where Ψ is the strain energy function and C = FTF is the right Cauchy–Green
strain tensor and E = 1

2 (C− I) is the Green strain tensor.

3.3. THE NON-LINEAR FINITE ELEMENT METHOD FOR LARGE DISPLACEMENTS53

3.3.2 The Finite Element Method

Our mathematical model can be stated as

0 = Pρ + Pe + Pb. (3.68)

We have applied continuum mechanics to develop formulas for the terms above.
Our final versions using spatial integrals are,

Pρ =

∫
v

ρ~̈x · ~wdv, (3.69a)

Pe =

∫
v

σ : ∇~wdv, (3.69b)

Pb =

∫
v

c~̇x · ~wdv. (3.69c)

We will now develop the model further by rewriting it to use a different stress
tensor than the Cauchy stress tensor. The Eulerian weak form of the elastic
stress term is

Pe =

∫
v

σ : ∇~wdv =

∫
V

PFT : ∇~wdV. (3.70)

By the chain rule we know

∇~w =
∂ ~w

∂~x
=
∂ ~w

∂ ~X

∂ ~X

∂~x
= ∇0 ~wF−1, (3.71)

so that means the Lagrangian elastic stress term can be written as

Pe =

∫
V

PFT : ∇0 ~wF−1dV =

∫
V

P : ∇0 ~wdV. (3.72)

The discretization means we have the approximation,

~w ≈
∑
a∈e

Na(~X) ~̃wa, (3.73)

so (2)
∇0 ~w =

∑
a∈e

~̃wa ⊗∇0Na (3.74)

and we get

Pe =

∫
V

P :

(∑
a∈e

~̃wa ⊗∇0Na

)
dV, (3.75a)

=
∑
a∈e

(
~̃wa ·

∫
V

P∇0NadV

)
. (3.75b)

2The tensor product is defined as follows
(
~a⊗~b

)
~c =

(
~b · ~c

)
~a for three given vectors ~a, ~b and

~c.

54 CHAPTER 3. LAGRANGIAN FORMULATIONS

Putting it all together we know that

Pρ + Pe + Pb = 0, (3.76)

must hold for all ~̃wa, and further with substitution of the shape functions we
can now write for the eth element

Me ¨̃
~xe + Ce ˙̃

~xe + ~ke(~̃ue) = ~fe (3.77)

where

Me =

∫
V e
ρ0(Ne)TNedV, (3.78a)

Ce =

∫
V e
c0(Ne)TNedV, (3.78b)

~kea(~̃ue) =

∫
V e

P∇0NadV, (3.78c)

~ke =


~kei
~kej
~kek
~kem

 . (3.78d)

In the last equation above we have with out loss of generality assumed that
the eth element has four nodes labeled e ≡ {i, j, k,m}. This corresponds to a
tetrahedral mesh. Further we have assumed that the ~fe-vector is coming from
some constant body forces like gravity. Observe that the inertia and damping
terms are the same as in the corotational linear elasticity finite element method
we derived previously only the stiffness term is different.

After performing the assembly we have the differential equation to time in-
tegrate

M
¨̃
~x+ C

˙̃
~x+ ~k(~̃u) = ~f. (3.79)

3.4 The Finite Volume Method

In this section we will derive the method from [Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw]
using our notation and conventions. As before the Cauchy equation written in
terms of the first Piola–Kirchhoff stress tensor as

ρ0~̈x = ~b0 +∇0 ·P, ∀ ~X ∈ V, (3.80)

with the boundary condition

PN = ~t, ∀ ~X ∈ ∂Vt. (3.81)

The relation to the Cauchy stress tensor is given as

P = jσF−T (3.82)

3.4. THE FINITE VOLUME METHOD 55

and the second Piola–Kirchhoff tensor is related as

S = jF−1σF−T . (3.83)

Combining those relations give us

P = FS. (3.84)

We will use a tetrahedral mesh for our discretization. We will use a median dual
cell vertex control volume to develop our finite volume method. Let us integrate
the equation of motion over the volume of the control volume for the ith vertex,∫

V i
ρ0~̈xdV =

∫
V i

~b0dV +

∫
V i
∇0 ·PdV. (3.85)

We will assume that body forces are constant over the control volumes (like
gravity) and by applying the mid-point rule and Leibniz integral rule,

V iρ0~̈xi = V i~b0,i +

∫
V i
∇0 ·PdV. (3.86)

For the last term we will apply the Gauss divergence theorem∫
V i
∇0 ·PdV =

∫
∂V i

P ~NdS. (3.87)

Next we will examine the surface integral in more detail by breaking it down
into sub-parts. Let the index set of tetrahedrons that share the ith vertex be
written as N (i). Then ∫

∂V i
P ~NdS =

∑
e∈N (i)

∫
∂V ie

P ~NdS, (3.88)

where ∂V ie is the sub-part of the surface of the ith control volume that is con-
tained in the eth tetrahedron as illustrated in Figure 3.1(b).

We will now develop an efficient method for computing the sub-part of the
surface integral coming from ∂V ie . The idea is to create a closed surface over
the eth tetrahedron by patching ∂V ie with the faces of the eth tetrahedron. Now
without loss of generality we write the vertex indices of the eth tetrahedron
as {i, j, k,m}. Observe that the surface ∂V ie intersects the eth tetrahedron in
two parts. As a convenience we introduce the surface notation Sijme to mean
the contained surface sub-part of the triangle face defined by the mesh vertex
positions ~xi, ~xj and ~xm as illustrated in Figure 3.1(c). The closed surface of the
inside part of the tetrahedron containing the ith vertex can now be written as
the union of the surfaces ∂V ie , Sikje , Simke and Sijme . If we assume that the stress
tensor P is constant over the eth tetrahedron then we have∫

∂V ie

P ~NdS +

∫
Sikje

P ~NdS

+

∫
Simke

P ~NdS +

∫
Sijme

P ~NdS = ~0.

(3.89)

56 CHAPTER 3. LAGRANGIAN FORMULATIONS

(a) (b)

(c) (d)

Figure 3.1: Illustrations showing how the eth sub-part of the surface integral of
the ith volume is computed. (a) illustrates a 2D median dual vertex cell control
volume.(b) shows how one element from the vertex cell control volume are
divided into two parts for the 2D case. (c) illustrates the corresponding 3D case
of (b). Finally (d) illustrates how the boundary conditions are used for control
volumes on the boundary.

3.4. THE FINITE VOLUME METHOD 57

Because any closed surface integral over a constant value is always zero. When
dealing with boundary control volumes such as the one illustrated in 3.1(d) one
must apply the boundary condition PN = ~t on the boundary part of the surface
integral. This corresponds to adding traction forces along the boundary surface.

Now realizing that a sub-surface is always planar means that the unit out-
ward normal of Sijke is always constant. Let the area of the triangle given by
the vertex i, k, and j be written as Aikj = 1

2 ‖ (~xk − ~xi)× (~xj − ~xi) ‖ then the
outward unit normal of Sikje is

~N ikj
e =

(~xk − ~xi)× (~xj − ~xi)
2Aikj

. (3.90)

Using all this we have∫
∂V ie

P ~NdS =

− 1

3
P
(
~N ikj
e Aikj + ~N imk

e Aimk + ~N ijm
e Aijm

)
.

(3.91)

Putting it all together we obtain the second order differential equation

mi~̈xi = ~fi − ~k, (3.92)

where mi = V iρ0 is the total mass of the ith control volume (this corresponds
to a lumped mass matrix) and the elastic forces are

~k =
1

3

∑
e∈N (i)

Pe
(
~N ikj
e Aikj + ~N imk

e Aimk + ~N ijm
e Aijm

)
(3.93)

where Pe is the constant stress of the eth tetrahedron and ~fi = V i~b0,i is the
control volume body forces. The factor 1

3 comes from the fact that we used a
median dual cell vertex control volume.

We saw previously for the corotational formulation that for linear shape
functions on a tetrahedral mesh one may compute the deformation gradient as

Fe = EE−1
0 . (3.94)

This is constant over the eth tetrahedron. Therefore the right Cauchy–Green
strain tensor Ce = (Fe)T (Fe) will be a constant over the tetrahedral element
and further the Green strain tensor is constant and given by Ee = 1

2 (Ce − I).
The constant element stress tensor is then obtained from some constitutive law
as

Se =
∂Ψ

∂Ee
. (3.95)

For the particular case of Saint Venant–Kirchhoff materials we have

Se = λtr (Ee) I + 2µEe. (3.96)

58 CHAPTER 3. LAGRANGIAN FORMULATIONS

Observe that the choice of linear shape functions is consistent with our assump-
tion of constant stress tensors.

When we rewrite the second order differential equation into a coupled first
order system then we may time discretize the coupled system using a semi im-
plicit Euler scheme,

~vt+∆t
i = ~vti +

∆t

mi

(
~f − ~kt

)
, (3.97a)

~xt+∆t
i = ~xti + ∆t~vt+∆t

i . (3.97b)

Observe the elastic forces are treated explicit and therefor Fe and subsequently
Pe = FeSe are computed based on ~xt values. This has the added benefit of not
needing to evaluate the Jacobian of the elastic forces which would be needed if
an implicit velocity update was wanted.

3.5 Summary

We derived the mathematical foundation for the corotational linear finite el-
ement method. Our result is given by (3.42) with discrete matrices shown
in (3.43). Finite difference approximations lead us to the velocity and position
update rules given by (2.7) and (2.8). Finally adding the corotational formula-
tion resulted in a rotation given by (3.57) which are used to update the stiffness
terms using (3.58).

Hereafter we considered large displacements and derived a non-linear finite
element method in (3.77) with discrete matrices given by (3.78). We showed
two different time discretizations that lead to an explicit and an implicit scheme
as shown in (2.10) and (2.11). The implicit scheme was only mentioned and
full details are in [Erleben(2011b)].

Finally, we derived a finite volume method resulting in an elastic force term
given by (3.93) and a semi-implicit time integration update rule given by (3.97).

Chapter 4

The Tangent Stiffness Matrix
for the Implicit Non-linear
Finite Element Method

Hyper elastic materials under large deformations is easily modeled using non-
linear finite element analysis. Time discretization of the resulting linear fi-
nite element model results in initial value problems given by coupled first or-
der differential systems. We have derived an showed this in previous work
[Erleben(2011a)].

When an implicit method is used the tangent stiffness matrix must be evalu-
ated. In previous work we omitted detailed formulas for evaluating the tangent
stiffness matrix. This is the topic of this technical report.

4.1 Introduction

For convenience we have restated a short version of our derivation of the non-
linear finite element method in Section 4.2 where we derive a formula for com-
puting the elastic forces on a node a from a finite element e as

~kea(~u) =

∫
V e

P∇0NadV. (4.1)

where V e is the volume of the eth element. P is the first Piola–Kirchhoff stress
tensor and Na is the material shape function associated with the ath node and ~u
is the displacement field.

We assume without loss of generality that we have a tetrahedral mesh. Then
our elements are tetrahedra and consist of four nodes. Thus, we write e ≡
{i, j, k,m} and a ∈ e. For any material point ~X from the eth element we make

59

60 CHAPTER 4. TANGENT STIFFNESS MATRIX

the approximations

~u(~X) ≈
∑
c∈e

Nc(~X)~uc (4.2)

and
∇0~u(~X) ≈

∑
c∈e

~uc ⊗∇0Nc(~X) (4.3)

where ∇ = ∂
∂~x is the spatial gradient and ∇0 = ∂

∂ ~X
the material gradient.

The problem we address in this paper is simply that of finding a formula for
evaluating the term

∂~kea
∂~ub

=
∂

∂~ub

∫
V e

P∇0NadV, (4.4)

for any b ∈ e. This is a 3-by-3 matrix telling us how node b as seen from e
influences the node a as seen from e. Thus, it is a sub-block of the local tangent
stiffness matrix Ke defined as,

Ke =
∂~ke

∂~ue
=


∂~kei
∂~ui

∂~kei
∂~uj

∂~kei
∂~uk

∂~kei
∂~um

∂~kej
∂~ui

∂~kej
∂~uj

∂~kej
∂~uk

∂~kej
∂~um

∂~kek
∂~ui

∂~kek
∂~uj

∂~kek
∂~uk

∂~kek
∂~um

∂~kem
∂~ui

∂~kem
∂~uj

∂~kem
∂~uk

∂~kem
∂~um

 . (4.5)

To assemble the whole tangent stiffness matrix one must iterative over all ele-
ments and add them up appropriately. For completeness Appendix A.2 outlines
an assembly process.

4.2 The Non-linear Finite Element Method

We will briefly present a derivation of the non-linear finite element method for
hyper elastic materials under large deformations.

4.2.1 The Governing and Constitutive Equations

We will start by stating the elastic model as a partial differential equation. We
will use common continuum mechanics definitions and terms as found in many
textbooks[Chadwick(1999), Bonet and Wood(2000), Spencer(2004), Reddy(2008)]
and [Lai et al.(2009)Lai, Rubin, and Krempl]. The deformation gradient is de-
fined as

F =
∂~x

∂ ~X
= ∇0~x = I +∇0~u, (4.6)

where ~x is current spatial position, ~X the corresponding material position and
~u = ~x − ~X is the displacement field. The gradient operator ∇0 ≡ ∂

∂ ~X
is the

4.2. THE NON-LINEAR FINITE ELEMENT METHOD 61

material gradient. Observe that F−1 = ∂ ~X
∂~x . The determinant of the deformation

gradient is written as
j = det (F) . (4.7)

It is used when changing from material to spatial differential volume elements

dv = jdV. (4.8)

The Cauchy equation written in terms of the first Piola–Kirchhoff stress tensor
is

ρ0~̈x = ~b0 +∇0 ·P, ∀ ~X ∈ V (4.9)

where ρ0 is the material mass density and ~b0 is material body density forces.
The boundary condition is

PN = ~t, ∀ ~X ∈ ∂Vt. (4.10)

where ~N is the outward unit material normal on the material surface boundary
∂Vt and ~t is some pre-scribed surface traction. The relation to the Cauchy stress
tensor σ is given as

P = jσF−T (4.11)

and the second Piola–Kirchhoff tensor S is related as

S = jF−1σF−T . (4.12)

Combining those relations give us

P = FS. (4.13)

Isotropic hyper elasticity implies that we can write the second Piola–Kirchhoff
stress tensor as

S =
∂Ψ

∂E
= 2

∂Ψ

∂C
, (4.14)

where Ψ is the strain energy function and C = FTF is the right Cauchy–Green
strain tensor and E = 1

2 (C− I) is the Green strain tensor.

4.2.2 The Finite Element Method

The model is derived by multiplying the Cauchy equation by an admissible test
function ~w, taking the spatial volume integral and rewriting the integrals into
weak form. The resulting mathematical model can be stated as

0 = Pρ + Pe + Pv, (4.15)

where the weak form spatial integrals are given as,

Pρ =

∫
v

ρ~̈x · ~wdv, (4.16a)

Pe =

∫
v

σ : ∇~wdv, (4.16b)

Pv =

∫
v

c~̇x · ~wdv. (4.16c)

62 CHAPTER 4. TANGENT STIFFNESS MATRIX

Here Pρ is the inertia term, Pe the elastic stress term and Pv a viscous damping
term. Without loss of generality we have omitted terms for other body forces
and surface traction. We will now develop the model further by rewriting it to
use a different stress tensor than the Cauchy stress tensor. The spatial weak
form of the elastic stress term is rewritten into the material frame

Pe =

∫
v

σ : ∇~wdv =

∫
V

PFT : ∇~wdV. (4.17)

By the chain rule we know

∇~w =
∂ ~w

∂~x
=
∂ ~w

∂ ~X

∂ ~X

∂~x
= ∇0 ~wF−1, (4.18)

so that means the material elastic stress term can be written

Pe =

∫
V

PFT : ∇0 ~wF−1dV =

∫
V

P : ∇0 ~wdV. (4.19)

The discretization means we have the approximation

~w ≈
∑
c

Nc(~X)~wc, (4.20)

so
∇0 ~w =

∑
c

~wc ⊗∇0Nc (4.21)

where c is the nodal (or quadrature point) indices of the whole computational
mesh and Nc(~X) is the material shape function associated with the c node. The
same approximations can be used for any other fields like the displacement field
~u. Substitution of our approximations give,

Pe =

∫
V

P :

(∑
c

~wc ⊗∇0Nc

)
dV, (4.22a)

=
∑
c

(
~wc ·

∫
V

P∇0NcdV

)
. (4.22b)

Putting it all together we know that

Pρ + Pe + Pv = 0, (4.23)

must hold for all ~wc, and further with substitution of approximations for ~x and
~u we can write for the eth element

Me~̈xe + Ce~̇xe + ~ke(~ue) = ~fe. (4.24)

If we with out loss of generality assume that the eth element has four nodes
labeled e ≡ {i, j, k,m} which corresponds to a tetrahedral mesh then the terms

4.3. THE STRAIGHTFORWARD CALCULUS APPROACH 63

in the equation of the eth element is given as

~ue =


~uei
~uej
~uek
~uem

 , (4.25a)

~xe =


~xei
~xej
~xek
~xem

 , (4.25b)

and

Ne =
[
NiI NjI NkI NlI

]
, (4.26a)

Me =

∫
V e
ρ0(Ne)TNedV, (4.26b)

Ce =

∫
V e
c0(Ne)TNedV, (4.26c)

~kec(~u
e) =

∫
V e

P∇0NcdV, (4.26d)

~ke =


~kei
~kej
~kek
~kem

 . (4.26e)

We have assumed that the ~fe-vector is coming from some constant body forces
like gravity. Observe that the inertia and damping terms are the same as in the
corotational linear elasticity finite element method derived in [Erleben(2011a)].
After performing the assembly we have the differential equation to time inte-
grate

M~̈x+ C~̇x+ ~k(~u) = ~f. (4.27)

4.3 The Straightforward Calculus Approach

For sake of readability we introduce the notation ~g = ∇0N and note that the
material shape function gradients are independent of the displacement field ~u.
We will consider the scalar element I,K of the local tangent stiffness matrix and

64 CHAPTER 4. TANGENT STIFFNESS MATRIX

use Leibniz rule to finally obtain

∂~kea,I
∂~ub,K

=
∂

∂~ub,K

∫
V e

3∑
J=1

(PI,J~ga,J) dV, (4.28a)

=

3∑
J=1

∫
V e

∂

∂~ub,K
(PI,J~ga,J) dV, (4.28b)

=

3∑
J=1

∫
V e

(
∂PI,J

∂~ub,K

)
~ga,JdV. (4.28c)

From this we observe that we are seeking a formula for ∂PI,J
∂~ub,K

.
The first Piola–Kirchhoff stress tensor is by definition a function of the defor-

mation gradient which again is a function of the displacement field so we write
P(F(u)). From definitions we have,

F = I +∇0~u, (4.29a)

P =
∂Ψ(F)

∂F
, (4.29b)

where Ψ(F) is the strain energy function which is either given in closed form or
measured from experiments. By the chain rule we find,

∂PI,J

∂~ub,K
=
∂ ∂Ψ
∂FI,J

∂~ub,K
=

3∑
L=1

3∑
M=1

∂2Ψ

∂FL,M∂FI,J

∂FL,M

∂~ub,K
. (4.30)

One usually write the fourth order elasticity tensorA for the first Piola–Kirchhoff
stress tensor as

AI,J,L,M ≡
∂2Ψ

∂FL,M∂FI,J
= AL,M,I,J. (4.31)

Given a constitutive model for Ψ one can derive closed form solutions for com-
puting A. Thus, we now have,

∂PI,J

∂~ub,K
=

3∑
L=1

3∑
M=1

AI,J,L,M
∂FL,M

∂~ub,K
. (4.32)

If we substitue∇0~u(~X) ≈
∑
c∈e ~uc⊗∇0Nc(~X) into F = I+∇0~u then we obtain,

FL,M ≈ δL,M +
∑
c∈e

~uc,L~gc,M, (4.33)

where δL,M is the Kronecker delta function defined as

δL,M =

{
1 if L = M
0 otherwise

. (4.34)

4.4. THE BONET AND WOOD APPROACH 65

From this we have
∂FL,M

∂~ub,K
= δL,K~gb,M. (4.35)

Putting it all together we have the final closed form solution

∂PI,J

∂~ub,K
=

3∑
L=1

3∑
M=1

AI,J,L,M (δL,K∇0Nb,M) (4.36)

and

∂~kea,I
∂~ub,K

=

3∑
J=1

∫
V e

(
3∑

L=1

3∑
M=1

AI,J,L,M

(δL,K∇0Nb,M))∇0Na,JdV

(4.37)

which is conveniently reduced to

∂~kea,I
∂~ub,K

=

3∑
J=1

3∑
M=1

∫
V e
AI,J,K,M∇0Nb,M∇0Na,JdV. (4.38)

From the symmetry of A it follows that

AI,J,K,M∇0Nb,M∇0Na,J = AK,M,I,J∇0Nb,M∇0Na,J (4.39)

and since we are free to swap the indices M and J we find that

∂~kea,I
∂~ub,K

=
∂~kea,K
∂~ub,I

. (4.40)

That is the local tangent stiffness matrices are symmetric and hence the global
tangent stiffness matrix is symmetric too.

4.4 The Bonet and Wood Approach

In [Bonet and Wood(2000)] a different approach is used for deriving the tan-
gent stiffness matrix. Here the authors use the directional derivative to make
the first order Taylor approximation. As an example let ~H be some arbitrary
vector function then

~H(~x+ ~u) ≈ ~H(~x) +
∂ ~H(~x)

∂~u
~u ≡ ~H(~x) +D ~H(~x)[~u] (4.41)

where D ~H(~x)[~u] denotes the directional derivative of ~H at the point ~x in the
direction ~u. Another difference is that the formulas for the tangent stiffness
matrix is derived before substitution of the finite element approximations. In
our approach substitutions were made before the derivatives were computed.
However, both approaches lead to the same formulas.

66 CHAPTER 4. TANGENT STIFFNESS MATRIX

We wish to compute the directional derivative of P : ∇0 ~w. Using the product
rule we have,

D (P : ∇0 ~w) [~u] = DP[~u] : ∇0 ~w + P : D∇0 ~w[~u]. (4.42)

The test function ~w is an arbitrary constant therefore we have D∇0 ~w[~u] = 0
and so

D (P : ∇0 ~w) [~u] = DP[~u] : ∇0 ~w. (4.43)

By definition we know P = ∂Ψ
∂F so using the chain rule we find

DPI,J[~u] =

3∑
K=1

3∑
M=1

∂2Ψ

∂FK,M∂FI,J
DFK,M[~u]. (4.44)

We define the fourth order elasticity tensor A as

AK,M,I,J = AI,J,K,M ≡
∂2Ψ

∂FK,M∂FI,J
. (4.45)

Using our definition we may now write

DP[~u] = A : DF[~u]. (4.46)

Finally we observe that DF[~u] = ∇0~u so putting it all together we find

D (P : ∇0 ~w) [~u] = ∇0 ~w : A : ∇0~u. (4.47)

Using the approximations ∇0 ~w ≈
∑
a ~wa⊗∇0Na and ∇0~u ≈

∑
b ~ub⊗∇0Nb we

find

∇0 ~w :A : ∇0~u ≈∑
a

∑
b

(~wa ⊗∇0Na) : A : (~ub ⊗∇0Nb).
(4.48)

Next we use the rules that for any second order tensor B and vectors ~v and ~w
we have (~w ⊗ ~v) : B = B : (~w ⊗ ~v) = ~w ·B~v so

(~wa ⊗∇0Na) : (A : (~ub ⊗∇0Nb)) =

~wa · ((A : (~ub ⊗∇0Nb))∇0Na) .
(4.49)

Next we change to index notation and use the definition of the double contrac-
tion so the right hand side becomes,

3∑
I=1

3∑
J=1

3∑
K=1

3∑
M=1

~wa,IAI,J,K,M∇0Nb,M∇0Na,J~ub,K (4.50)

We may rearrange the order of terms into

3∑
I=1

~wa,I

3∑
K=1

 3∑
J=1

3∑
M=1

AI,J,K,M∇0Nb,M∇0Na,J

 ~ub,K. (4.51)

4.5. COMPUTING THE ELASTICITY TENSOR A 67

Finally we take the volume integral over the element

~wa ·Ke
a,b~ub =

3∑
I=1

~wa,I

(
3∑

K=1

∂~kea,I
∂~ub,K

~ub,K

)
(4.52)

where
∂~kea,I
∂~ub,K

=

3∑
J=1

3∑
M=1

∫
V e
AI,J,K,M∇0Nb,M∇0Na,JdV (4.53)

If we compare our final result to (4.38) we observe that the formulas are iden-
tical.

4.5 Computing the Elasticity Tensor A

We have derived a closed form solution for the local tangent stiffness matrix
that requires us to compute the fourth order elasticity tensor A defined as

AK,M,I,J = AI,J,K,M ≡
∂2Ψ

∂FK,M∂FI,J
. (4.54)

Any second order tensor can be written as a double contraction of a fourth order
tensor and a second order tensor. We will try to exploit this knowledge to find
an easy formula for A. From P = FS we have

PI,J =

3∑
M=1

FI,MSM,J =

3∑
K=1

3∑
M=1

δI,KSM,JFK,M (4.55)

From this it appears that if we define the fourth order tensor SI,J,K,M = δI,KSM,J
then

P = S : F (4.56)

In general S depends on F. For those special materials where S is a constant
we have A = S.

The cases where one knows the strain energy function Ψ as a function of F,
are trivially dealt with using straightforward calculus. In some cases Ψ is given
in terms of the Green strain tensor E. For instance for Saint Venant–Kirchhoff
model we have

Ψ(E) =
λ

2
(tr (E))

2
+ µE : E (4.57)

where λ and µ are the Lamé coefficients. It follows that

S =
∂Ψ(E)

∂E
= λtr (E) I + 2µE. (4.58)

68 CHAPTER 4. TANGENT STIFFNESS MATRIX

There are other cases where the right Cauchy–Green strain tensor are used to
parameterize the strain energy function or the eigenvalues of the right Cauchy–
Green strain tensor.

S = 2
∂Ψ(C)

∂C
, (4.59a)

S =

3∑
A=1

2
∂Ψ(Λ)

∂λ2
A

(~vA ⊗ ~vA) , (4.59b)

where ~vA is the Ath eigenvector for the eigenvalue λ2
A so we have C = ΩΛΩT

where

Λ =

λ2
1 0 0

0 λ2
2 0

0 0 λ2
3

 (4.60)

and
Ω =

[
~v1 ~v2 ~v3

]
. (4.61)

If we can compute S then we can always compute P = FS. For the elasticity
tensor A it seems hopeless. We may compute

AI,J,K,M =
∂PK,M

∂FI,J
, (4.62a)

=
∑
R

∂ (FK,RSR,M)

∂FI,J
, (4.62b)

=
∑
R

∂FK,R

∂FI,J
SR,M +

∑
R

FK,R
∂SR,M

∂FI,J
, (4.62c)

= δI,KSJ,M +
∑
R

FK,R
∂SR,M

∂FI,J
. (4.62d)

Thus, we find ourselves looking for a formula for a ∂SR,M
∂FI,J

term,

∂SR,M

∂FI,J
=

3∑
V=1

3∑
W=1

∂SR,M

∂CV,W

∂CV,W

∂FI,J
, (4.63a)

∂SR,M

∂FI,J
=

3∑
V=1

3∑
W=1

∂SR,M

∂EV,W

∂EV,W

∂FI,J
. (4.63b)

Here the terms C = ∂S
∂E = 2 ∂S∂C can be found from closed form solutions. So

we are only seeking formulas for ∂E
∂F and ∂C

∂F . From definition we have E =
1
2 (C− I) so we find

∂EV,W

∂FI,J
=

1

2

∂CV,W

∂FI,J
. (4.64)

4.5. COMPUTING THE ELASTICITY TENSOR A 69

We know from definition that C = FTF so

∂CV,W

∂FI,J
=

3∑
L=1

(
∂FL,V

∂FI,J
FL,W + FL,V

∂FL,W

∂FI,J

)
, (4.65a)

=

3∑
L=1

(δL,IδV,JFL,W + δL,IδW,JFL,V) , (4.65b)

= δV,JFI,W + δW,JFI,V. (4.65c)

Let us define the fourth order tensor JV,W,IJ = δV,JFI,W + δW,JFI,V then we may
combine our derivations into

AI,J,K,M = δI,KSJ,M

+
1

2

∑
R

FK,R
∑
W

∑
V
CR,M,V,WJV,W,I,J.

(4.66)

To deal with the case of eigenvalue parameterizations we compute the fourth
order elasticity tensor C in terms of the right Cauchy–Green strain censor as

CI,J,K,M = 2
∂SI,J

∂CK,M
(4.67a)

= 2

3∑
A=1

3∑
B=1

2
∂2Ψ(Λ)

∂λ2
B∂λ

2
A

∂λ2
B

∂CK,M
(~vA ⊗ ~vA)I,J . (4.67b)

Now from Λ = ΩTCΩ we find

λ2
B = ~vB ·C~vB. (4.68)

Letting the Euclidean basis be given by the orthonormal vectors ~e1, ~e2 and ~e3

then C =
∑3

I=1

∑3
J=1 CI,J (~eI ⊗ ~eJ) and we find

λ2
B = ~vB ·

 3∑
I=1

3∑
J=1

CI,J (~eI ⊗ ~eJ)~vB

 . (4.69)

From the above it follows that

∂λ2
B

∂CK,M
= ~vB · (~eK ⊗ ~eM)~vB, (4.70a)

= (~vB · ~eM) (~vB · ~eK) , (4.70b)

= (~vB ⊗ ~vB)K,M . (4.70c)

Since (~vA ⊗ ~vA)I,J (~vB ⊗ ~vB)K,M = (~vA ⊗ ~vA ⊗ ~vB ⊗ ~vB)I,J,K,M we finally have

C =
∑
A,B

4
∂2Ψ(Λ)

∂λ2
A∂λ

2
B
NA,A,B,B, (4.71)

where
NA,A,B,B = ~vA ⊗ ~vA ⊗ ~vB ⊗ ~vB (4.72)

Having computed C we can use the formula in (4.66) to obtain A.

70 CHAPTER 4. TANGENT STIFFNESS MATRIX

4.5.1 Material Examples

Here follows some examples of common strain energy functions: volume preser-
vation, Riemannian elasticity, Saint Venant–Kirchhoff material, and Ogden model.

Ψvol =

(∏
A
λ

1
2

A − 1

)2

, (4.73a)

Ψrie =
µ

4

∑
A

log2 λA +
λ

8

(∑
A

log λA

)2

, (4.73b)

Ψsvk =
µ

4

∑
A

(
λ

1
2

A − 1
)2

+
λ

8

(∑
A

(
λ

1
2

A − 1
))2

, (4.73c)

Ψogden =

N∑
P=1

µP

αP

(
λ
αP
2

1 + λ
αP
2

2 + λ
αP
2

3 − 3
)
, (4.73d)

where µ and λ are the Lamé constants and αP and µP are often determined
experimentally.

In [McAdams et al.(2011)McAdams, Zhu, Selle, Empey, Tamstorf, Teran, and Sifakis]
a corotational elastic strain energy is presented as

Ψcorot = µ ‖ F−R ‖2F +
λ

2

(
tr
(
RTF− I

))2
, (4.74)

where µ and λ are the Lamé constants, F is the deformation gradient and R is
the rotation tensor from the polar decomposition F = RU.

4.6 Summary

In this paper we treated the implicit time integration scheme of the non-linear
finite element method we introduced in [Erleben(2011a)]. The result was a
root search problem (5.1) that could be solved iteratively. In each iteration a
velocity update is computed by (2.57) and used to find a position update (2.52).
In order to compute the velocity update one must compute the tangent stiffness
matrix for which we have derived a closed form formula given by (4.38). The
formula uses a fourth order elasticity censorA that is not always easily obtained.
To deal with this we derived a conversion formula (4.66) that allows one to
compute A from the material elasticity tensor C. For the cases where C is not
known we have shown how to obtain it knowing only the principal stretches of
the material (4.71).

Chapter 5

Implementation Tricks and
Tips for Finite Element
Modeling of Hyper Elastic
Materials

In a series of papers we have introduced the finite element method for hyper
elastic deformable models undergoing large deformations. Although we have
derived pseudo code of the algorithms we have introduced throughout our writ-
ings we have largely omitted implementation specific details. In this final work
on hyper elastic models we shift aim and focus on implementation tips and
tricks.

We have chosen to use Matlab as the example programming language to
allow the casual reader to focus more on principles and ideas rather than pro-
gramming language specifics. This provide the readers with a cross-platform
and easy up to run code snippets. Our points generalize to other programming
languages as well such as NumPhy, SciPhy or even C and C++.

Finally, we compare our own implementations of the various methods in par-
ticular we investigate performance as well as mesh and time step convergence
studies.

5.1 Introduction

In previous work we have attacked the most wide spread accurate physics-based
simulation methods for hyper elastic materials used in the field of computer
graphics [Erleben(2011c), Erleben(2011a), Erleben(2011b)]. Our approach
has so far been mathematical and theoretical with great focus on the proper
arguments and stating the physical assumptions used throughout the discretiza-
tion processes. In this final paper we wish to close our work on these hyper

71

72 CHAPTER 5. IMPLEMENTATION

elastic simulation methods by turning our attention towards the more practical
matters such as how to implement various difficult parts of these methods. To
make the knowledge more accessible to the readers we supplement our work
with an Open Source project [Erleben(2011e)] covering all the methods and
variations we have covered in our series of papers.

The details we cover here is on large part the details of the numerical method
for the implicit non-linear finite element method. This may be found in Sec-
tion 5.2. When setting up a simulation one needs to specify proper boundary
conditions. We will explain in Section 5.3 how one may introduce fixed posi-
tion type of boundary conditions. In simulations one wishes to examine what
happens under different external loading. Thus, in Section 5.4 we derive the
necessary formalism needed to apply arbitrary surface traction to all the meth-
ods. Following this we analyze what kind of preconditioner one should apply to
the iterative solvers in Section 5.5. Even though our work has put much focus on
getting the numerical methods correct one should not omit the importance of a
good quality mesh. Thus, in Section 5.6 we introduce various quality measures
that are useful for inspecting ones mesh. Before our conclusion in Section 5.8
we will investigate numerical properties and compare the different methods in
Section 5.7.

5.2 The Non-linear Newton Method

The implicit time stepping of the non-linear finite element method is given by
solutions to the root search problem

Φ(~x,~v) = ~0. (5.1)

We apply an iterative Newton method that produces a sequence of iterates
{~xk, ~zk}∞k=1 that hopefully converges towards a solution ~x∗, ~v∗ defined by Φ(~x∗, ~v∗) =
~0. To keep notation simple we write Φk to mean Φ(~xk, ~vk) and similar for other
functions taking our iterates as arguments. Thus, in general it holds that Φk 6= 0
otherwise the kth iterate would be a solution to the problem. We define the gra-
dient operator ∇ as follows

∇ ≡
[
∂
∂~x

∂
∂~v

]
(5.2)

Observe that if this is applied to a scalar function ψk then ∇ψk is a row vector
and not a column vector. The Jacobian of the root search function Φ at the kth

iterate is

Jk = ∇Φk =
[
∂Φk

∂~x
∂Φk

∂~v

]
=

[
I −∆tI

∆tK (M + ∆tC)

]
.

(5.3)

Hirota [Hirota(2002)] presented an implicit method for a non-linear finite ele-
ment method which is similar to our formulation using implicit time stepping.
Hirota used a two point predictor-corrector to generate initial iterates for his

5.2. THE NON-LINEAR NEWTON METHOD 73

Newton method. Incremental loading was applied and a backtracking line–
search method that guarantees non inverted tetrahedra. Our approach differs
in that we use a different initial iterate and a different line–search method.

In Section 5.2.1 we address the issue of whether the Newton system is singu-
lar or not. Then in Section 5.2.2 we will prove that an exact Newton direction
always exist and even in case only an approximate Newton direction is com-
puted one can ensure that the Newton direction is always a descent direction.

5.2.1 Solving the Newton System

The Newton direction is a solution to the Newton system

− Φk = Jk
[
∆~xk

∆~vk

]
. (5.4)

The question we have is whether we always can find a Newton direction. This
means we need to consider if the Jacobian is non-singular. We immediately ob-
serve that both diagonal blocks of the Jacobian are symmetric positive definite
matrices. This means that both diagonal blocks are always non-singular. From
this it follows that the Jacobian is always non-singular.

If we apply a Shur Complement method [Saad(2003)] then from the first
row of our Newton system we obtain

∆~xk = ∆t∆~vk − Φk~x. (5.5)

From the second row we have

− Φk~v = ∆tK∆~xk + (M + ∆tC) ∆~vk. (5.6)

Substituting the first equation we find(
M + ∆tC + ∆t2K

)︸ ︷︷ ︸
A

∆~vk = ∆tKΦk~x − Φk~v︸ ︷︷ ︸
~b

. (5.7)

Recall M and C are symmetric positive definite matrices and K is a symmetric
matrix (not necessarily positive definite). Thus, the A-matrix is a symmetric
positive definite matrix and as such a preconditioned conjugate gradient (PCG)
method will be suitable for obtaining an approximation for ∆~vk. Once ∆~vk has
been computed we may compute ∆~xk using the equation we obtained from the
first row of the Newton system.

In our implementation we use the full system from (5.4) rather than the
Shur reduced system in (5.7). Observe that the Shur reduced system can be
solved efficiently using PCG. The full Newton system is non-symmetric although
non-singular so here generalized minimum residual (GMRES) method is a good
candidate.

74 CHAPTER 5. IMPLEMENTATION

5.2.2 Is the Newton Direction a Descent Direction?

The natural merit function is defined by

ψ(~x,~v) ≡ 1

2
‖ Φ(~x,~v) ‖2=

1

2
Φ(~x,~v)TΦ(~x,~v). (5.8)

From calculus we find the gradient of merit function to be

∇ψk =
(
Φk
)T

Jk. (5.9)

Observe that from the properties of Jk that ∇ψk = ~0T if and only if Φk = ~0. In
this case we already have ψk = 0 implying that the kth iterate is a solution of
the root search problem. The directional derivative in the Newton direction is
given by

Dψk = ∇ψk
[
∆~xk

∆~vk

]
, (5.10a)

=
(
Φk
)T

Jk
[
∆~xk

∆~vk

]
, (5.10b)

= −
(
Φk
)T

Φk. (5.10c)

As can be seen the exact Newton direction is always a descent direction for the
natural merit function. Given that we only solve the Newton system approxi-
mately then we may define the residual as

~rk = −Φk − Jk
[
∆~xk

∆~vk

]
. (5.11)

Giving us

Jk
[
∆~xk

∆~vk

]
= −

(
Φk + ~rk

)
. (5.12)

The directional derivative of the merit function now becomes

Dψk = −
(
Φk
)T (

Φk + ~rk
)
. (5.13)

If
(
Φk
)T
~rk ≥ 0 then the Newton direction will always be a descent direction.

On the other hand if
(
Φk
)T
~rk < 0 then the residual term could cause problems.

If ‖ ~rk ‖<‖ Φk ‖ then we always have a descent direction. Thus, if an iterative
solver is used for the Newton system then we require the stopping criteria

‖ ~rk ‖< γ ‖ Φk ‖ (5.14)

for some tolerance 0 < γ < 1.

5.2. THE NON-LINEAR NEWTON METHOD 75

5.2.3 The Line–Search Method

Although we know we have a descent direction it may be that the non-linear
nature of the root search problem Φ results in overshooting. Thus, to globalize
the Newton method and make it more robust a line–search method can be em-
ployed. The idea is to make sure the line–search method finds a step length τk

that results in a sufficient decrease of the merit function ψ when looking in the
Newton direction. The Newton update is given by

~xk+1 = ~xk + τk∆~xk, (5.15a)

~vk+1 = ~vk + τk∆~vk. (5.15b)

If we look at the behavior of ψk+1 then we have

ψ(~xk+1, ~vk+1) = ψ(~xk + τk∆~xk, ~vk + τk∆~vk). (5.16)

If we use a linear approximation then we find

ψk+1 ≈ ψk +
(
βDψk

)
τk︸ ︷︷ ︸

f(τk)

, (5.17)

for now one can think of β = 1. We will explain the usage of β later. Observe
the right-hand side is a simple linear real function of the step length. Whereas
the left hand side is a highly non-linear real function of the step length. The
idea is now to use a relaxed version of the linear approximation that is one
choose 0 < β � 1 and then one wishes to find maximum τk-values such that
ψk+1(τk) < f(τk). In which case we say we have a sufficient decrease. When
we look for the step length we use an iterative approach. Initially we use the
optimal Newton step length τk = 1. If the sufficient decrease test fails then
we reduce the step length by a constant fraction τk ← ατk. Where the step
reduction parameter α fulfills β < α < 1. To avoid iterating forever a minimum
step length value 0 < τmin � 1 may be specified or a maximum iteration limit.
The line–search method we have outlined is called an Armijo backtracking line–
search method [Nocedal and Wright(1999)].

In excess to the sufficient decrease condition we may require that tetrahedra
do not invert or we may even test if the tetrahedra do not change their vol-
ume too much from iteration to iteration. We can summarize our line–search

76 CHAPTER 5. IMPLEMENTATION

algorithm in the following pseudo code,

1 : Algorithm line–search
2 : τ ← 1
3 : while forever
4 : v ← minimum tetrahedra volume at τ
5 : ρ← minimum tetrahedra volume ratio at τ
6 : if ψ(τ) < f(τ) and v > 0 and ρ > 0.1 then
7 : return τ
8 : end
9 : τ ← ατ

10 : end
11 : end

5.2.4 The Stopping Criteria

It may be beneficial to use many different stopping criteria during the Newton
iterations. In order to make sure the numerical method is efficient in the sense
that computations give a sufficient improvement in the approximate solution
and to guard towards potential numerical problems.

An absolute stopping criteria can be use to stop iteration as soon as one is
close enough to a root. As the merit function is bounded from below by zero
such a test can be stated as

ψ(~xk, ~vk) ≤ εabs (5.18)

where εabs > 0 is a user specified tolerance. A relative stopping criteria can be
used to make sure that one bails out if there is no prospect of any significant
improvement, ∣∣ψk+1 − ψk

∣∣ ≤ εrelψ
k (5.19)

where εrel > 0 is a user specified tolerance. This kind of criteria could suggest a
local minima could be near by. For our problem this would suggest that we are
near a root for φ, so a close to zero gradient test might be useful,

‖ ∇ψ(~xk, ~vk) ‖2≤ ε∇ (5.20)

where ε∇ > 0 is a user specified tolerance. It may be that the Newton direction
is too small to make any significant change in the iterative value in which case
it make sense to give up,

‖
[(

∆~xk
)T (

∆~vk
)T]T ‖∞≤ ε∆ (5.21)

where ε∆ > 0. It may be worthwhile to guard against a non descent Newton
direction. Although our theory guarantees this never can occur numerical issues
may cause trouble. That means we always require that

∇ψ(~xk, ~vk)

[
∆~xk

∆~vk

]
< 0. (5.22)

5.2. THE NON-LINEAR NEWTON METHOD 77

To guard against infinite looping one should ensure to specify a maximum iter-
ation count for the Newton method. Finally, it may be a good idea to test for
stagnation which means that after having performed the line–search it should
be tested if a significant change is being made to the current iterate,

‖ τk
[(

∆~xk
)T (

∆~vk
)T]T ‖∞≤ ετ (5.23)

where ετ > 0. Selecting the values of the ε tolerance parameters should not be
done too aggressively. For instance we use a absolute tolerance of no more than
10−2. Although our stagnation tolerances go as low as 10−15 we often only use
10−5 to test for relative convergence. The maximum iteration count we often
select to be no more than 10 iterations.

5.2.5 Generating Good Starting Iterates

In [Hirota(2002)] a two point predictor-corrector method is used to generate
an initial starting iterate for his non-linear implicit finite element method. We
found this approach a little awkward to implement and opted for a different
approach taking advantage of the optimization setting of the implicit method.
The idea is to use a fixed number of gradient descent steps on the natural merit
function (5.8). We already derived a closed form solution for the gradient (5.9).
Thus, in each iteration of the gradient descent method we perform the update

[
~xk+1

~vk+1

]
=

[
~xk

~vk

]
− τk∇ψk. (5.24)

To make sure the gradient descent method does not overshoot we apply a
damped version. Thus, we find the step length τk using a backtracking line–
search method where we test if the new iterate gives a lower ψ-value than ψk.
This corresponds to picking a sufficient decrease parameter value of β = 0 and
a step-reduction parameter value of α = 1

2 . No other extra tests were done and
we always run a fixed number of gradient descent iterations, 3 in our current
implementation.

5.2.6 Incremental Loading

The idea of incremental loading means that one slowly increases the load forces
~f . For each increment one re-invokes the Newton method using the previous

78 CHAPTER 5. IMPLEMENTATION

solution as an initial guess for the new load. This can be summarized as follows

1 : Algorithm incremental-load
2 : ∆~f ← some fraction of ~f
3 : ~f ← ~0

4 : while ~f not full load do
5 : ~f ← ~f + ∆~f

6 : (~x,~v)← Newton–Method(~x,~v, ~f)
7 : End
8 : return (~x,~v)
End

In our test runs we often only used three equal sized increments.

5.2.7 Computing the Elasticity Tensor

For the implicit non-linear Finite element method we need a fourth order tensor.
The fourth order tensor is not easily stored in a Matlab array. It is possible to
flattern the tensor into a two dimensional array. The trick is to use the first
two indices as block indices and the last two indices as entries into a sub-block.
Thus, we store the fourth order tensor as a 3× 3 array of matrix blocks each of
dimension 3× 3. We may write this as

A ≡ A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (5.25)

where for any I, J we have AI,J ∈ R3×3. In practice this means that the storage
forA is a 9×9 matrix. Knowing this storage layout we may now access elements
of the fourth order tensor as follows

AI,J,K,M = A(3(I−1)+K),(3(J−1)+M). (5.26)

When using Matlab then implementing the equations derived by Erleben in
[Erleben(2011b)] can be computational expensive as they results in deep nested
for loops that must be evaluated for all elements in a mesh. Using symbolic dif-
ferentiation and code generation tools can help a lot in these circumstances.
For instance in Matlab one can use the symbolic package to let Matlab derive
a closed form solution for the elasticity tensor as well as the tangent stiffness
matrix. Once Matlab have processed this one can ask Matlab to generate code
matching the closed form formulas that Matlab has derived.

In the case of a Saint Venant–Kirchhoff material one may proceed as follows.

1 syms lambda mu real;
2 syms F11 F12 F13...
3 F21 F22 F23...
4 F31 F32 F33 real;

5.2. THE NON-LINEAR NEWTON METHOD 79

5 F = [F11 F12 F13;...
6 F21 F22 F23;...
7 F31 F32 F33...
8];
9 C = (F')*F;

10 E = (1/2) * (C−eye(3,3));
11

12 % Strain energy function
13 psi = (1/2) * lambda* trace(E)^2 +...
14 mu * trace(E*E);
15

16 % First Piola−−Kirchhoff stress tensor
17 P = sym('TEMP')*ones(3,3);
18 for i=1:3
19 for j=1:3
20 P(i,j) = diff(psi, F(i,j));
21 end
22 end
23

24 % Material Elasticity Censor
25 A = sym('TEMP')*ones(9,9);
26 for i=1:3
27 for j=1:3
28 for k=1:3
29 for m=1:3
30 r = (i−1)*3 + k;
31 c = (j−1)*3 + m;
32 A(r, c) = diff(P(i,j) , F(k,m));
33 end
34 end
35 end
36 end
37 A = simplify(A);
38 matlabFunction(A,'file','compute_A.m');
39

40 % Tangent stiffness element
41 syms Ga1 Ga2 Ga3 real;
42 syms Gb1 Gb2 Gb3 real;
43 Ga = [Ga1; Ga2; Ga3];
44 Gb = [Gb1; Gb2; Gb3];
45

46 Kab = sym('TEMP')*ones(3,3);
47 Kab(:,:) = 0;
48 for i=1:3
49 for k=1:3
50 for j=1:3
51 for m=1:3
52 r = (i−1)*3 + k;
53 c = (j−1)*3 + m;
54 Kab(i, k) = Kab(i, k) +...
55 A(r,c)*Gb(m)*Ga(j);
56 end
57 end
58 end
59 end
60 Kab = simplify(Kab);
61 matlabFunction(Kab,'file','compute_K.m');

80 CHAPTER 5. IMPLEMENTATION

One may generate c-code using ccode function instead of using matlabFunction.
Overall one can think of this work process as an efficient way to perform full
loop-unrolling and exploiting any common sub-expressions in any computa-
tions. The main challenge now lies in writing the strain energy in terms of
the deformation gradient components.

5.2.8 Built-in Matlab Support

Rather than implementing a Newton method from scratch one can take advan-
tage of numerical methods already in Matlab. Matlab already has in built root
search solver fsolve which can be used for fast prototyping or lazy program-
ming. To use the built in solver one must first make a Matlab function that
returns the current value of Φ as well as the current Jacobian. This could look
like this,

1 function [phi J] = myfun(z,)
2 phi = call_phi(z,);
3 J = call_nabla_phi(z,);
4 end

Afterwards one may set up specific choices and tolerances for the numerical
method, before creating a function that can be passed to fsolve. This could
be written as,

1 options = optimset('Jacobian','on',...
2 'Display','iter',...
3 'TolFun', 10e−2,...
4 'TolX',10e−5);
5

6 f = @(z) myfun(z,);
7 z = [p; v];
8 z = fsolve(f, z, options);
9

10 p = z(1:length(p));
11 v = z(length(p)+1:end);

The advantage of writing ones own solver is of course that one can specialize
the implementation for the specific task at hand whereas the built-in functions
of Matlab may solve more general problems and may not be as fast.

5.3 The Influence of Boundary Conditions

Often we wish to specify boundary conditions in order to fixate parts of the
surface of a deformable model. This type of boundary condition is a Dirichlet
boundary condition. Assume we apply such a boundary condition to the ith

node of our computational mesh. Then the boundary condition can be written

5.3. THE INFLUENCE OF BOUNDARY CONDITIONS 81

as

~xi = ~ci, (5.27a)

~vi = ~0, (5.27b)

where ~ci ∈ R3 is some known fixed position. We will now explain the details
in applying this boundary condition in the implicit non-linear finite element
method. If we look at our root search problem then we should drop all variables
with such boundary conditions as these are always fulfilled. Obviously we have
∆~xki = ~0 and ∆~vki = ~0. The boundary condition influence our computations
when we compute the Newton direction. If we let A be the nodal index set of
active boundary conditions and F the nodal index set of free nodes. Then the
implicit function defining the root search problem can be imaginary partitioned
as

Φ(~xF , ~vF , ~xA, ~vA) =


Φ~xF
Φ~vF
Φ~xA
Φ~vA

 = ~0 (5.28)

where

Φ~xF = ~xF − ~xtF −∆t~vF , (5.29a)

Φ~vF = (MF,F + ∆tCF,F)~vF

−MF,F~v
t
F −∆t ~fF + ∆t~kF , (5.29b)

Φ~xA = ~xA − ~c, (5.29c)

Φ~vA = ~vA. (5.29d)

This results in the Newton system
−Φ~xF
−Φ~vF
−Φ~xA
−Φ~vA

 = J


∆~xF
∆~vF
∆~xA
∆~vA

 , (5.30)

where

J =


IF,F −∆tIF,F 0 0

∆tKF,F (MF,F + ∆tCF,F) ∆tKF,A 0
0 0 IA,A 0
0 0 0 IA,A

 .
For our specific boundary condition we have −Φ~xA = −Φ~vA = ∆~xA = ∆~vA =
~0. Substitution this prior knowledge gives[

−Φ~xF
−Φ~vF

]
=

[
IF,F −∆tIF,F

∆tKF,F (MF,F + ∆tCF,F)

] [
∆~xF
∆~vF

]
. (5.31)

Applying a Shur complement method we observe that this would be equivalent
to solving

AF,F∆~vkF = ~bF (5.32)

82 CHAPTER 5. IMPLEMENTATION

and then afterwards compute

∆~xkF = ∆t∆~vkF − Φ~xF . (5.33)

Following the same procedure other boundary conditions can be applied. For
our particular case we observe that we can solve a sub-part of our original full
system from Section 5.2.1.

If we consider the corotational linear finite element method and the semi-
implicit time stepper of the non-linear finite element method then they both first
compute a velocity update solving a linear system that we here write abstractly
as

Av = ~b. (5.34)

Following this the methods compute the position update written abstractly as

~xt+1 = ~xt + ∆t~v. (5.35)

Applying the boundary conditions and using the imaginary partitions we have

AFFvF = ~bF −AFA~vA. (5.36)

Followed by
~xt+1
F = ~xtF + ∆t~vF . (5.37)

The finite volume method is even more easy to apply the boundary conditions
to as one here works directly on the variables in F .

5.4 Applying Surface Traction

Let us first consider the finite element methods when applying a surface trac-
tion. Recall that after putting our equations of motion into weak form we
have [Erleben(2011a)]

Pρ + Pb + Pe + Pt = 0, (5.38)

where the Pt term is given by the spatial integral

Pt = −
∫
∂vt

~t · ~wds. (5.39)

Here ~w is an arbitrary test function. Pt can be interpreted as the power of the
traction. For ease of derivation let us consider a single triangle with label e that
is part of the spatial boundary surface ∂vt. Let the triangle area be Ae and let
the nodes be labelled by i, j, and k.

Next step is to apply the Galerkin approximations to discretize the traction
term. That is we make the substitutions

~w ≈ Ni ~wi +Nj ~wj +Nk ~wk =
∑

a∈{i,j,k}

Na ~wa, (5.40a)

~t ≈ Ni~ti +Nj~tj +Nk~tk =
∑

b∈{i,j,k}

Nb~tb. (5.40b)

5.4. APPLYING SURFACE TRACTION 83

Here N ’s are the linear shape functions for the triangle and ~wa’s are arbitrary
unknown nodal virtual displacements. The ~tb are known nodal surface tractions
that is being applied to the mesh. After substitution we have,

P et ≈ −
∫
∂vet

(∑
a

Na ~wa

)
·

(∑
b

Nb~tb

)
ds. (5.41)

We may rewrite this approximation into matrix notation

P et ≈ −

 ~wi~wj
~wk

T Le

~ti~tj
~tk

 (5.42)

where

Le =

∫
∂vet

 N2
i I NiNjI NiNkI

NjNiI N2
j I NjNkI

NkNiI NkNjI N2
k I

 ds. (5.43)

Following the standard finite element procedure by using the fact that the ~w
terms are arbitrary and all power terms sum to zero we can drop the displace-
ments and get the final nodal element traction force term,

~fet = Le

~ti~tj
~tk

 . (5.44)

The global nodal traction force is found by assembling all the element traction
forces. That is one sums over all e that is part of ∂vt. We name L the nodal
load distribution matrix and all that remains is to find a closed-form solution
for evaluating its value.

To derive a closed form solution we will make a change of variables into the
isoparametric space (X ,Y,Z) where the triangle node i is placed at (0, 0, 0), j
at (1, 0, 0) and k at (0, 1, 0). The isoparametric triangle has constant area equal
to 1

2 . Further, since the shape functions are the barycentric coordinates ie. the
area weighted coordinates then in isoparametric space we have

Nj = X , (5.45a)

Nk = Y, (5.45b)

Ni = 1−X − Y. (5.45c)

The change of variables is then

Le =

∫
∂vet

LiiI LijI LikI
LjiI LjjI LjkI
LkiI LkjI LkkI

 jdS. (5.46)

84 CHAPTER 5. IMPLEMENTATION

For linear triangular elements we have j = Ae and

Lii = (1−X − Y)
2
, (5.47a)

Lij = (1−X − Y)X , (5.47b)

Lik = (1−X − Y)Y, (5.47c)

Lji = X (1−X − Y) , (5.47d)

Ljj = X 2, (5.47e)

Ljk = XY, (5.47f)

Lki = Y (1−X − Y) , (5.47g)

Lkj = YX , (5.47h)

Lkk = Y2. (5.47i)

These are all simple polynomials in the isoparametric space and can be alge-
braically integrated to yield the final result

Le =
Ae

24

2I I I
I 2I I
I I 2I

 . (5.48)

Now we will turn our attention to the finite volume method. Here we must look
at the control area si of a surface node i. Then we have

~f it =

∫
si

~tds. (5.49)

The control area will consist of sub parts of all triangles sharing the node i.
Thus, we can replace the integral with a summation over the triangles

~f it =
∑
a

∫
sai

~tds︸ ︷︷ ︸
~ha

. (5.50)

Let us develop the sub-term corresponding to the triangle e that has two other
nodes labelled j and k. That is the surface integral ~he =

∫
sei
~tds. The corners of

the sub control area sei wrt. the ith vertex is

~p1 =
[
1 0 0

]T
(5.51a)

~p2 =
[

3
4

1
4 0

]T
(5.51b)

~p3 =
[

3
4 0 1

4

]T
(5.51c)

~p4 =
[

1
3

1
3

1
3

]T
(5.51d)

where we used barycentric coordinates. The mid point of the sub control area
is

~p =
1

2
(~p1 + ~p2 + ~p3 + ~p4) =

[
34
48

7
48

7
48

]T
. (5.52)

5.5. USING PRECONDITIONING 85

Thus, assuming that we can linear interpolate the surface traction from nodal
traction values (as in the finite element method) and using a mid point rule
approximation we have

~he ≈
Ae

3

(
34

48
~ti +

7

48
~tj +

7

48
~tk

)
. (5.53)

Rather than evaluating (5.50) by iterating over nodes we can instead iterate
over triangles and scatter the contribution from each triangle to the nodal sum-
mation in (5.50). Thus, we find

~fet = Le

~ti~tj
~tk

 . (5.54)

where

Le =
Ae

144

34I 7I 7I
7I 34I 7I
7I 7I 34I

 . (5.55)

We can now apply any nodal surface traction distribution to a finite element
method using the load matrix in (5.48) or to the finite volume method using
the load matrix in (5.55).

5.5 Using Preconditioning

In the case of the semi-implicit non-linear finite element method the coefficient
matrix of the velocity update is the mass matrix M. This is known to be a
symmetric and positive definite matrix. Often it will have larger diagonal values
than off-diagonal values. Thus, a good choice for a preconditioner is to use the
diagonal of the mass matrix. In particular if a lumped mass matrix is used then
this preconditioner will result in a solution in one iteration of PCG.

When analyzing the velocity update of the corotational linear finite element
method we observe that the coefficient matrix is a sum of three terms A =
M+∆tC+∆t2K. When ∆t becomes very small (as it should be to ensure a good
finite difference approximation) the mass matrix will dominate the expression.
Thus, again we note that using the diagonal of the mass matrix will be a good
choice for a preconditioner.

The same analysis applies in the case of the Shur reduced version of the
Newton system for the implicit non-linear finite element method (5.7). For the
full Newton system (5.4) it is less obvious what preconditioner to use.

5.6 Mesh Quality Measures

The numerical conditioning of the matrix equations that we form in the numeri-
cal methods we have derived is highly dependent on the shape of the individual

86 CHAPTER 5. IMPLEMENTATION

tetrahedra in the mesh. Thus, to ensure that ones mesh is well shaped one
often uses a histogram of tetrahedron quality measures to inspect ones mesh.
In essence a quality measure tries to measure how well shaped a given tetra-
hedron really is. That is how close a tetrahedron is to being an equilateral
tetrahedron. Often the quality measure is designed to give a specific value say 1
if a “perfect” tetrahedron is found or the value 0 is the worst case tetrahedron is
found. Observe that different quality measures might have different values but
the principle stays the same. Thus, a histogram shows the distribution of good
and bad tetrahedra in a given mesh.

We will now present a few quality measure definitions. In the following we
assume that we are given a single tetrahedron with local node indices 1, 2, 3
and 4. The radius ratio quality of a tetrahedron is 2 times the ratio of the radius
of the inscribed sphere rin divided by the radius of the circumscribed sphere
rout [Shewchuk(2002)],

Qrr ≡ 2
rin

rout
. (5.56)

An equilateral tetrahedron achieves the maximum possible quality of 1. The
inscribed radius and maximum edge length ratio is given by [Shewchuk(2002)],

Qrl ≡ 2
√

6
rin

max1≤i<j≤4 lij
(5.57)

where lij is the length of the edge between the nodes i and j. The minimum
sine of the dihedral angles of a tetrahedron is given by [Shewchuk(2002)]

Qθ ≡
9
√

2

8
V min

1≤i<j≤4

{
lij
AkAl

}
. (5.58)

Here we assumed the traditional convention and labeled the tetrahedron nodes
by i, j, k and m. Here Ak is the signed area of the triangle opposing the kth

node. V is the signed volume of the tetrahedron. If any of the A’s are zero
then we will have a division by zero when computing the quality measure. If
A becomes zero then we have a flat tetrahedron and dihedral angles must then
be 0 and 180 degrees, implying that the sine of the dihedral angles is always
zero. Thus, by definition the quality measure should be zero. The eigenvalue
or mean ratio of a tetrahedron known as the volume-length ratio measure is
defined by [Joe(1991)]

Qvl ≡ 12
(3V)

2
3∑

1≤i<j≤4 l
2
ij

. (5.59)

This value may be used as a shape quality measure for the tetrahedron. For
an equilateral tetrahedron, the value of this quality measure will be 1. For any
other tetrahedron, the value will be between 0 and 1.

5.7 Numerical Experiments

We have implemented all the numerical methods in Matlab (R2010a) and run
our experiments on a cluster with 8 Intel(R) Xeon(R) CPU X5355 @ 2.66GHz

5.7. NUMERICAL EXPERIMENTS 87

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 0.033333 [s]

y [m]

z
 [

m
]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 0.76667 [s]

y [m]

z
 [

m
]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [

m
]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 2.9667 [s]

y [m]

z
 [

m
]

(a) Bend

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 0.033333 [s]

y [m]

z
 [

m
]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 0.76667 [s]

y [m]

z
 [

m
]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [

m
]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 2.9667 [s]

y [m]

z
 [

m
]

(b) Twist

Figure 5.1: Still frames for the bend and twist motions taken from the finite
volume method simulation.

and 18 GB shared ram running Linux version 2.6.20-gentoo-r8. Each experi-
ment only used a single CPU core.

In our experiments we have used two different test setups. In both cases we
use a cantilever beam. In the first case a downward constant uniform traction
~t =

[
0 −5 0

]T
(kN m−2) is applied at the end surface of the beam. The load

is pulling the beam downward in a bending motion. In the other test case we
apply a rotational traction ~t = 5

[
0 z −y

]T
(kN m−2) at the end surface of

the beam. Here y and z are the current spatial coordinate values of any point
on the surface of the end. This causes the beam to undergo a twisting motion.
We refer to the test cases as bend and twist. Figure 5.1 shows examples of the
twist and bend motions that is being simulated.

For sake of readability we introduce some abbreviations for the methods
we have examined. The corotational linear elastic finite element method is
denoted COR, the finite volume method is referenced by FVM, the semi-implicit
non-linear finite element method is given by SI-FEM and the implicit version by
I-FEM. The lumped version of SI-FEM is labelled with L-FEM.

5.7.1 Meshing Issues

For our convergence studies we created a series of meshes for our beam. Thus,
the beam shape is an oblong box shape with increasing resolution. The box
shape was chosen to be 10 × 4 × 4 meters in size and centered around the ori-
gin. We used DistMesh [Persson and Strang(2004)] to create the tetrahedral
meshes. We varied the mesh resolution by using different values for the mini-
mum edge lengths of the resulting tetrahedra mesh,

Lmin = {0.80, 0.75, 0.65, 0.5, 0.45, 0.4, 0.35, 0.3} . (5.60)

88 CHAPTER 5. IMPLEMENTATION

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3
x 10

4 Real Time Ratio

Minimum Edge Length

N
u
m

b
e
r

 [
#
]

Tetrahedra

Vertices

Figure 5.2: Mesh size as a function of minimum edge length parameter for
DistMesh. Observe that mesh sizes range from 1000 tetrahedra up to 27000
tetrahedra.

We set DistMesh to generate a uniform mesh resulting in a final mesh having
similar sized tetrahedron. Figure 5.2 shows how our mesh sizes change.

We inspected the mesh quality measures of the our generated meshes to en-
sure that they were not too bad for our convergence studies. The histograms
of the volume length quality measure are shown in Figure 5.3. From our his-
tograms we conclude that the mesh quality is similar for all resolutions and the
mesh elements are good conditioned as they all have values close to one. The
other quality measures we listed in Section 5.6 shows the same tendencies. We
omitted showing the histograms here due to space considerations.

5.7.2 Parameter Selection

When using the SI-FEM, I-FEM, L-FEM and FVM we apply a Saint Venant–
Kirchhoff material and use the material parameters: mass density ρ = 1000
(Kg m−3), Young modulus of E = 10 · 105 (Pa), Poisson ratio ν = 0.3, and vis-
cous damping c = 0.0004 (s−1). COR uses a different material model with a
similar expression to the Saint Venant–Kirchhoff model except it uses the small
strain tensor in place of the large strain tensor [Erleben(2011a)]. We observed
that materials behave more “stiff” using this material model. Thus, we use a low
Young Modulus value E = 5000 (Pa) in our tests to create motion that can be

5.7. NUMERICAL EXPERIMENTS 89

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140
va
lu
e

Qvl

(a) lmin = 0.80 m

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

va
lu
e

Qvl

(b) lmin = 0.75 m

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

va
lu
e

Qvl

(c) lmin = 0.65 m

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500
va
lu
e

Qvl

(d) lmin = 0.5 m

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

va
lu
e

Qvl

(e) lmin = 0.45 m

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

va
lu
e

Qvl

(f) lmin = 0.4 m

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

va
lu
e

Qvl

(g) lmin = 0.35 m

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

va
lu
e

Qvl

(h) lmin = 0.3 m

Figure 5.3: Histograms of volume-length ratio quality measures for our test
meshes with varying minimum edge length size lmin. Observe that in all cases
the quality distribution looks the same and that many elements have a quality
close to one.

90 CHAPTER 5. IMPLEMENTATION

Name E (Pa) ν ρ (Kg m−3)
Cartilage 0.69 · 106 0.018 †1000
Cortical bone 16.16 · 109 0.33 �1600
Cancellous bone 452 · 106 0.3 �1600
Rubber 0.01 · 109 0.48 1050
Concrete 30 · 109 0.20 2320
Copper 125 · 109 0.35 8900
Steel 210 · 109 0.31 7800
Aluminium 72 · 109 0.34 2700
Glass 50 · 109 0.18 2190

Table 5.1: Material parameter values for common types of materials. Young
Modulus E, Poisson Ratio ν and mass density ρ. Observe (�) is for dense bone
and (†) could not be found.

visually inspected. The remaining material parameters are chosen in the same
fashion as for the FEM and FVM methods. The chosen material parameters do
not correspond to any real-life material we know of. We just selected some val-
ues that would allow us to compare motions across the different methods. One
may refer to Table 5.1 for more real life values (1).

We compared the convergence rate of a PCG solver against a non precon-
ditioned version. Figure 5.4 shows our results for the SI-FEM method. We
observe that the preconditioned version has approximately two orders of mag-
nitude more accuracy. We observed the same tendency for the COR method.
We omitted plots due to space considerations. We have not applied precondi-
tioner to the GMRES solver for the I-FEM method as it is not obvious which
preconditioner to use for (5.4). In all cases of PCG and GMRES we used default
tolerance set by Matlab. According to Matlab documentation PCG uses a default
tolerance of 1.0 · 10−6 and a maximum number of iterations of 20. GMRES uses
the same tolerance and no restarts by default and a maximum iteration limit of
10 iterations.

For the I-FEM method we use the Newton method outlined in Section 5.2.
For our testing we use the default values given in Table 5.2. Most of the tol-
erances are picked not to be too aggressive. In all our tests we observed that
the Newton method gave up reaching its maximum number of iterations. Three
of the numerical parameters control the algorithmic behavior of our Newton
method: the number of incremental loads (nload) ie. the number of times the

1 Values are taken from

• http://en.wikipedia.org/wiki/Density,

• http://en.wikipedia.org/wiki/Young%27s_modulus,

• http://en.wikipedia.org/wiki/Poisson%27s_ratio,

• http://www.engineeringtoolbox.com/poissons-ratio-d_1224.html, and

• http://www.engineeringtoolbox.com/young-modulus-d_417.html.

http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Young%27s_modulus
http://en.wikipedia.org/wiki/Poisson%27s_ratio
http://www.engineeringtoolbox.com/poissons-ratio-d_1224.html
http://www.engineeringtoolbox.com/young-modulus-d_417.html

5.7. NUMERICAL EXPERIMENTS 91

2 4 6 8 10 12 14

10 4

10 2

100

102
Convergence Rate

Iteration

Er
ro

r

(a) With preconditioner

5 10 15 20

10 1

100

101

102
Convergence Rate

Iteration

Er
ro

r

(b) Without preconditioner

Figure 5.4: Convergence rate comparison of conjugate gradient method for
the semi-implicit non-linear finite element method with and with out precon-
ditioner. The plots show convergence rates for 10 time steps.

92 CHAPTER 5. IMPLEMENTATION

Description Value
Absolute tolerance (εabs) 1.0 · 10−2

Relative tolerance (εrel) 1.0 · 10−5

Zero gradient tolerance (ε∇) 1.0 · 10−15

Too small Newton direction (ε∆) 1.0 · 10−7

Stagnation tolerance (ετ) 2.2204 · 10−15

Maximum Newton iterations (nmax) 10
Gradient descent iterations for warm start (ngrad) 3
Incremental loads (nload) 3

Table 5.2: Default parameter values for the Newton method used to solve the
implicit non-linear finite element method.

Newton method is restarted, the number of gradient descent iterations used
for warm starting the Newton method (ngrad), and the maximum number of
allowed Newton iterations (nmax) per restart.

To investigate the parameters influence on the convergence properties of
the Newton method we varied their values and compared the convergence rate
plots shown in Figure 5.5. For the comparison study we used a single time step
of the twist test case. From our plots it shows that using incremental loading
seems to worsen the final accuracy of the Newton method. Further, it seems
that the gradient descent warm start has little influence on the final accuracy.
In all cases we observe an initial super linear convergence rate that seems to
deteriorate into a linear convergence rate.

5.7.3 Performance Measurements

We have measured the average wall clock time per time step for both test cases
under varying mesh sizes. Figure 5.6 shows our measurements. In our exper-
iments we used ∆t = 10−4 (s) for COR, SI-FEM, L-FEM and FVM. For I-FEM
we used ∆t = 10−2. Thus, the measurements are based on approximately 1000
time steps and 100 time steps respectively. We observe that I-FEM is the most
computational expensive method up to four orders of magnitude slower than
the fastest method which is the FVM method. The COR, SI-FEM and L-FEM
shows similar performance and is roughly two orders of magnitude slower than
FVM. There is a tendency showing that COR is slightly more expensive than
SI-FEM and L-FEM. All methods scale linear in the number of mesh elements
which is expected.

We have investigated the details of how the wall-clock time per time step
behaves under varying parameters. Figure 5.7 shows selected plots of our mea-
surements when varying the mesh element size. As can be observed in the figure
our results indicate that each simulation run has a similar behavior through-out
the simulation. We observe there is great variation across methods and mesh
element sizes. Not surprising has the mesh element size great influence on the
performance as this directly influence the size of the matrix equations. Nor is

5.7. NUMERICAL EXPERIMENTS 93

2 4 6 8 10

101

Convergence Rate

Iteration

Er
ro

r

(a) nmax = 10, ngrad =
3, nload = 1

5 10 15 20 25 30

101

Convergence Rate

Iteration
Er

ro
r

(b) nmax = 10, ngrad =
3, nload = 3

5 10 15 20 25 30

101

Convergence Rate

Iteration

Er
ro

r

(c) nmax = 16, ngrad =
6, nload = 2

5 10 15 20 25 30

100

101

102

Convergence Rate

Iteration

Er
ro

r

(d) nmax = 30, ngrad =
0, nload = 1

5 10 15 20 25 30

100

101

Convergence Rate

Iteration

Er
ro

r

(e) nmax = 30, ngrad =
9, nload = 1

Figure 5.5: Comparison study of numerical parameters used for the Newton
method that solves the implicit non-linear finite element method. The number
of incremental loads nload is varied as well as the number of gradient descent
steps ngrad and number of Newton iterations nmax.

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Wall Clock Time per Time Step

Tetrahedra [#]

T
im

e

[s

]

COR
SI−FEM
FVM
I−FEM
L−FEM

(a) Bend

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Wall Clock Time per Time Step

Tetrahedra [#]

T
im

e

[s

]

COR
SI−FEM
FVM
I−FEM
L−FEM

(b) Twist

Figure 5.6: Performance measurements for both the bend and twist test cases
for the first second of simulated time. Observe that I-FEM is four orders of
magnitude slower than FVM and that FVM is the fastest method.

94 CHAPTER 5. IMPLEMENTATION

200 400 600 800 1000

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0.525

0.53

Wall clock time of time step

Iteration

V
a

lu
e

 [
s
]

Unsorted

Sorted

(a) COR ∆t = 10−4 s,
lmin = 0.65 m

200 400 600 800 1000

0.2

0.3

0.4

0.5

0.6

0.7

Wall clock time of time step

Iteration

V
a
lu

e
 [
s
]

Unsorted

Sorted

(b) FVM ∆t = 10−4 s,
lmin = 0.65 m

200 400 600 800 1000

0.5

1

1.5

2

2.5

3

3.5

4

Wall clock time of time step

Iteration

V
a
lu

e
 [
s
]

Unsorted

Sorted

(c) SI-FEM ∆t = 10−4 s,
lmin = 0.65 m

20 40 60 80 100 120
120

140

160

180

200

220

Wall clock time of time step

Iteration

V
a

lu
e

 [
s
]

Unsorted

Sorted

(d) I-FEM ∆t = 10−4 s,
lmin = 0.65 m

200 400 600 800 1000

7

8

9

10

11

Wall clock time of time step

Iteration

V
a

lu
e

 [
s
]

Unsorted

Sorted

(e) COR ∆t = 10−4 s,
lmin = 0.4 m

200 400 600 800 1000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Wall clock time of time step

Iteration

V
a
lu

e
 [
s
]

Unsorted

Sorted

(f) FVM ∆t = 10−4 s,
lmin = 0.4 m

200 400 600 800 1000
4

5

6

7

8

9

Wall clock time of time step

Iteration

V
a
lu

e
 [
s
]

Unsorted

Sorted

(g) SI-FEM ∆t = 10−4 s,
lmin = 0.4 m

20 40 60 80 100 120
450

500

550

600

650

Wall clock time of time step

Iteration

V
a

lu
e

 [
s
]

Unsorted

Sorted

(h) I-FEM ∆t = 10−4 s,
lmin = 0.45 m

Figure 5.7: Wall clock comparison for the bend test case with varying mesh
element sizes. The plots show measurements of the first 1 second of simulated
time. Observe the large variation.

it surprising that the different methods have different computational cost. For
the same mesh size and time step size the FVM method has the lowest compu-
tational cost per time step. The SI-FEM method and the COR method are more
even whereas the I-FEM method is the most expensive.

5.7.4 Convergence Rates

The COR method and the SI-FEM method both use PCG for their velocity update
and the I-FEM method uses a Newton method. We have investigated the con-
vergence rate of the PCG solvers and the Newton method across varying mesh
element sizes and time step sizes. Figure 5.8 shows selected convergence error
plots for varying mesh element size and fixed time step size.

Figure 5.9 shows selected convergence plots with fixed mesh element size
and varying time step size. We observe in the shown plots that for the COR

5.7. NUMERICAL EXPERIMENTS 95

2 4 6 8 10 12 14

10
−4

10
−2

10
0

10
2

Convergence Rate

Iteration

E
rr

o
r

(a) COR ∆t = 10−4 s, lmin =
0.65 m

2 4 6 8 10 12 14

10
−4

10
−2

10
0

10
2

Convergence Rate

Iteration

E
rr

o
r

(b) SI-FEM ∆t = 10−4 s,
lmin = 0.65 m

5 10 15 20 25 30

10
0

10
1

Convergence Rate

Iteration
E

rr
o
r

(c) I-FEM ∆t = 10−4 s, lmin =
0.65 m

2 4 6 8 10 12 14

10
−4

10
−2

10
0

10
2

Convergence Rate

Iteration

E
rr

o
r

(d) COR ∆t = 10−4 s, lmin =
0.4 m

2 4 6 8 10 12 14

10
−4

10
−2

10
0

10
2

Convergence Rate

Iteration

E
rr

o
r

(e) SI-FEM ∆t = 10−4 s,
lmin = 0.4 m

2 4 6 8 10 12 14

10
1

Convergence Rate

Iteration

E
rr

o
r

(f) I-FEM ∆t = 10−4 s, lmin =
0.45 m

Figure 5.8: Selected convergence plots for the bend test case with varying mesh
element size. Notice that convergence rate is independent of the mesh element
size. Convergence plots are shown for all time steps during the first 1 second of
simulated time.

96 CHAPTER 5. IMPLEMENTATION

2 4 6 8 10 12 14

10
−4

10
−2

10
0

10
2

Convergence Rate

Iteration

E
rr

o
r

(a) COR ∆t = 10−2 s, lmin =
0.8 m

2 4 6 8 10 12 14

10
0

10
20

10
40

10
60

10
80

Convergence Rate

Iteration

E
rr

o
r

(b) SI-FEM ∆t = 10−2 s,
lmin = 0.8 m

5 10 15 20 25 30

10
0

10
1

Convergence Rate

Iteration

E
rr

o
r

(c) I-FEM ∆t = 10−2 s, lmin =
0.8

2 4 6 8 10 12 14

10
−6

10
−4

10
−2

10
0

10
2

Convergence Rate

Iteration

E
rr

o
r

(d) COR ∆t = 10−4 s, lmin =
0.8 m

2 4 6 8 10 12 14

10
−6

10
−4

10
−2

10
0

10
2

Convergence Rate

Iteration

E
rr

o
r

(e) SI-FEM ∆t = 10−4 s,
lmin = 0.8 m

1 2 3 4 5 6 7

10
−2

10
−1

Convergence Rate

Iteration

E
rr

o
r

(f) I-FEM ∆t = 10−4 s, lmin =
0.8 m

Figure 5.9: Selected convergence plots for the bend test case with varying time
step size. Convergence plots are shown for all time steps during the first 1
second of simulated time.

and SI-FEM methods the convergence rates appear to be independent of the
mesh element size. The time step size has great influence on SI-FEM too low
a value seems to yield a poor convergence constant. We believe this is related
to an unstable time integration as we generally observe simulation blow-ups for
SI-FEM when using ∆t = 10−2 seconds. The most efficient constant for SI-FEM
seems to be obtained with ∆t = 10−3 seconds or lower. The I-FEM method is
sensitive towards changes in mesh element size and time step size. It seems to
work best for a coarse mesh and with a time step size in the order of ∆t = 10−2

seconds. Due to space considerations we have omitted showing all our plots of
all test simulations. Our observations generalize to all our tests.

5.7.5 Mesh Convergence Experiment

We have traced the motion curves of the test point (4.5, 1.5, 1.5) during the first
one second of simulated time while varying the mesh element size. We then
visually inspected if the motion curve changed when we increased the mesh
resolution. We compared the motion curves at finest resolution between each
simulation method to see if the methods differ in their results.

We observed that the motion curves did not seem to vary greatly when in-
creasing the mesh element size. Thus, Figure 5.10 shows only the final motion

5.7. NUMERICAL EXPERIMENTS 97

200 400 600 800 1000

1

1.5

2

2.5

3

3.5

4

4.5

Test Point

Iteration

V
a

lu
e

 [
m

]

X

Y

Z

(a) COR ∆t = 10−4 s, lmin =
0.3 m

200 400 600 800 1000

1

1.5

2

2.5

3

3.5

4

4.5

Test Point

Iteration

V
a

lu
e

 [
m

]

X

Y

Z

(b) FVM ∆t = 10−4 s, lmin =
0.3 m

200 400 600 800 1000

1.5

2

2.5

3

3.5

4

4.5

Test Point

Iteration

V
a

lu
e

 [
m

]

X

Y

Z

(c) SI-FEM ∆t = 10−4 s,
lmin = 0.3 m

20 40 60 80 100 120

1.5

2

2.5

3

3.5

4

4.5

Test Point

Iteration

V
a

lu
e

 [
m

]

X

Y

Z

(d) I-FEM ∆t = 10−2 s, lmin =
0.65 m

200 400 600 800 1000

1.5

2

2.5

3

3.5

4

4.5

Test Point

Iteration

V
a

lu
e

 [
m

]

X

Y

Z

(e) L-FEM ∆t = 10−4 s, lmin =
0.4 m

Figure 5.10: The motion curves of the test point (4.5, 1.5, 1.5) at the finest mesh
resolution for one second of simulated time of the bend test case. Observe that
all methods produce similar motion.

curves at the finest mesh resolution where we obtained usable results. When
comparing motion curves across methods we do see some differences although
all curves have similar shapes. The L-FEM and SI-FEM methods are similar. The
FVM method seems to overshoot and the I-FEM method undershoots. This is
not surprisingly as this is emergent behavior of the discretization methods and
depends on the time step size. The COR method is different from the others this
too is not surprisingly given that its material model is different from the other
methods.

We recorded the total kinetic energy and compared this for different mesh
element sizes. Figure 5.11 shows the kinetic energy plots at the finest resolution
mesh for the bend test case. Again we observe little dependency on varying
the mesh element size. When we compare between different methods we see
similar shaped plots, but with a different energy rate. The kinetic energy of FVM
and I-FEM is five times larger than SI-FEM and L-FEM whereas COR is almost
twice that of SI-FEM and L-FEM.

We investigated the volume gain while varying the minimum mesh element
size. Figure 5.12 shows the volume gain plots for selected mesh element size
in the case of bend test case. We observe that FVM, SI-FEM and L-FEM have
similar shaped curves. The minimum and maximum element volume gain for
FVM is twice that of SI-FEM and L-FEM. The COR method have a minimum and

98 CHAPTER 5. IMPLEMENTATION

200 400 600 800 1000

2000

4000

6000

8000

10000

12000

14000

16000

18000

Kinetric Energy

Iteration

V
a

lu
e

 [
J
]

(a) COR ∆t = 10−4 s, lmin =
0.3 m

200 400 600 800 1000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4 Kinetric Energy

Iteration

V
a

lu
e

 [
J
]

(b) FVM ∆t = 10−4 s, lmin =
0.3 m

200 400 600 800 1000

2000

4000

6000

8000

10000

Kinetric Energy

Iteration

V
a

lu
e

 [
J
]

(c) SI-FEM ∆t = 10−4 s,
lmin = 0.3 m

20 40 60 80 100 120

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4 Kinetric Energy

Iteration

V
a

lu
e

 [
J
]

(d) I-FEM ∆t = 10−2 s, lmin =
0.45 m

200 400 600 800 1000

2000

4000

6000

8000

10000

Kinetric Energy

Iteration

V
a

lu
e

 [
J
]

(e) L-FEM ∆t = 10−4 s, lmin =
0.4 m

Figure 5.11: The kinetic energy at the finest mesh resolution for one second of
simulated time of the bend test case. Observe that all methods produce similar
energy behavior.

5.7. NUMERICAL EXPERIMENTS 99

200 400 600 800 1000

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Volume Gain

Iteration

P
ro

c
e

n
ta

g
e

 [
%

]

Total
Min Element
Max Element

(a) ∆t = 10−4 s, lmin =
0.45 m

200 400 600 800 1000

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

Volume Gain

Iteration

P
ro

c
e

n
ta

g
e

 [
%

]

Total
Min Element
Max Element

(b) ∆t = 10−4 s, lmin =
0.45 m

200 400 600 800 1000

0.98

0.99

1

1.01

1.02

Volume Gain

Iteration

P
ro

c
e

n
ta

g
e

 [
%

]

Total
Min Element
Max Element

(c) ∆t = 10−4 s, lmin =
0.45 m

20 40 60 80 100 120

0.997

0.998

0.999

1

1.001

1.002

1.003

Volume Gain

Iteration

P
ro

c
e

n
ta

g
e

 [
%

]

Total
Min Element
Max Element

(d) ∆t = 10−4 s, lmin =
0.45 m

200 400 600 800 1000

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

Volume Gain

Iteration

P
ro

c
e

n
ta

g
e

 [
%

]

Total
Min Element
Max Element

(e) ∆t = 10−4 s, lmin =
0.45 m

Figure 5.12: Volume gain of various methods for the bend test case. The finest
mesh resolution was shown where we have results for all methods.

maximum volume gain of the same order as the SI-FEM and L-FEM methods but
a different plot shape which is more similar to the I-FEM method. The I-FEM
method shows the smallest volume gain for the minimum and maximum ele-
ments. It is approximately an order of magnitude smaller. We have repeated all
of the above experiments for the twist test case and found similar conclussions.
Due to space considerations we have omitted showing the plots of these tests.

5.7.6 Time Step Convergence Experiment

We repeated the same test setups as in our mesh convergence experiments. We
kept the minimum mesh element size fixed and varied the time step size instead.
As before we measured the motion curve of the test point, the kinetic energy
and the volume gain. We will present results for the twist test case as the bend
test case shows the same observations.

We have omitted showing detailed plots of all experiments due to space
considerations. Figure 5.13 shows that SI-FEM is unstable for large time steps.
Figure 5.14 suggests that the I-FEM method has not yet converged and even
smaller time step sizes would be needed. When we examine the convergence
rates from Section 5.7.4 it seems more plausible that the problem lies in very
poor numerical solutions. It raises the question of whether a line–search method
really is best suited for this method?

We observed that the L-FEM method is similar to the SI-FEM method. The
L-FEM method does not appear to be unstable for larger time step sizes and only
show slightly different “displaced” kinetic energy curve. Both methods seem to
converge to the same result.

100 CHAPTER 5. IMPLEMENTATION

20 40 60 80 100 120

−4

−3

−2

−1

0

1

x 10
56 Test Point

Iteration

V
a

lu
e

 [
m

]

X

Y

Z

(a) ∆t = 10−2 s, lmin =
0.8 m

200 400 600 800 1000

1.5

2

2.5

3

3.5

4

4.5
Test Point

Iteration

V
a

lu
e

 [
m

]

X

Y

Z

(b) ∆t = 10−3 s,
lmin = 0.8 m

2000 4000 6000 8000 10000

1.5

2

2.5

3

3.5

4

4.5
Test Point

Iteration

V
a
lu

e
 [
m

]

X

Y

Z

(c) ∆t = 10−4 s, lmin =
0.8 m

2 4 6 8 10

x 10
4

1.5

2

2.5

3

3.5

4

4.5
Test Point

Iteration

V
a

lu
e

 [
m

]

X

Y

Z

(d) ∆t = 10−5 s,
lmin = 0.8 m

Figure 5.13: Motion curve of the test point (4.5, 1.5, 1.5) using the SI-FEM
method for the twist test case under varying time step sizes. Observe the simu-
lation blow up for ∆t = 10−2 seconds.

20 40 60 80 100 120

1000

2000

3000

4000

5000

6000

7000

8000

Kinetric Energy

Iteration

V
a

lu
e

 [
J
]

(a) ∆t = 10−2 s, lmin =
0.8 m

200 400 600 800 1000

1000

2000

3000

4000

5000

Kinetric Energy

Iteration

V
a

lu
e

 [
J
]

(b) ∆t = 10−3 s,
lmin = 0.8 m

2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

Kinetric Energy

Iteration

V
a
lu

e
 [
J
]

(c) ∆t = 10−4 s, lmin =
0.8 m

Figure 5.14: The kinetic energy when using the I-FEM method for the twist
test case under varying time step sizes. Notice that I-FEM appears to not have
converged.

5.7. NUMERICAL EXPERIMENTS 101

We noticed that the FVM method looks similar to the L-FEM and SI-FEM
methods. When looking at the volume gain we see that FVM is an order of mag-
nitude larger than L-FEM and SI-FEM. Looking at the motion curves and energy
plots one can not tell the L-FEM and FVM methods apart by visual inspection.
This is in agreement with theory stating the FVM is algebraic equivalent to the
L-FEM case [Erleben(2011a)].

5.7.7 Adaptive Time Stepping

To determine what the proper time step size should be for our simulation meth-
ods we used an adaptive time step method. This will try to adapt the time step
size during simulation to the best suitable value. The idea is simply to take a
coarse simulation step with time step size ∆t and a fine simulation step using
two time steps with ∆t

2 . If the nodal positional difference between coarse and
fine simulation steps is larger than a given threshold 10[− 4] then the time step
size is reduced to half its size ∆t ← ∆t

2 otherwise the simulation step is taken
using the results of the fine simulation. If there have been no time step reduc-
tions for a fixed number of times, four in our simulations, then we try to double
the time step size. One could add an extra test against volume inversion and use
this as a criteria for time step reduction or use some guard against a too large a
rate of volume change. In our tests we only used the positional difference test.

Based on the previous experiments we observe that the I-FEM is not compu-
tational efficient and suffers from lack of numerical robustness. Further, L-FEM
is really no different than FVM . Thus, we have tested COR, SI-FEM and FVM
on the eight test cases described below. For each simulation we let it run for 3
seconds of simulated time. To further test the differences between the compet-
ing simulation methods we created a few more test cases besides the twist and
bend test cases.

In our first variation we linear increase the traction in the twist and bend
test cases during the first simulated second to five times that of the constant
traction used in the standard twist and bend test cases. We refer to these two
test cases as incremental bend and incremental twist or just I-bend and I-twist for
short. In our second variation we used our fixed position boundary conditions
instead of the traction to generate the bending and twisting motions. Here we
apply a time varying Dirichlet boundary conditions to the free end of the beam.
During the first simulated second we twist the free end one time around the x
axis and we bend the free end π

2 radians around the y axis. We refer to these test
cases as boundary condition bend and twist or BC-bend and BC-twist for short.
Finally we extend our portfolio of test cases by a squeeze and stretch test case.
Here we use time varying boundary conditions on the end caps that during the
first simulated second either linear compress the beam to half size along the x
axis or linear elongate the beam to twice its length along the x axis.

The timing results are shown in Table 5.3. The adaptive time step size
method for the FVM results in average time-step size per test case that var-
ied from 0.0034 to 0.0001 seconds and a standard deviation that varied from

102 CHAPTER 5. IMPLEMENTATION

0.0001 to 0.0015 seconds. For the SI-FEM we killed squeeze after frame 55,
where wall clock time per simulation step took more than 10 hours to compute.
In the other test cases the average time-step size varied from 0.0001 to 0.0017
seconds and a standard deviation that varied from 0.0001 to 0.0008 seconds.
For the COR method the average time step size varied from 0.0001 to 0.0009
with a standard deviation that varied from 0.0002 to 0.0005. From these aver-
age numbers we conclude that the order of time step size for all methods are
the same. For the wanted accuracy a time step size of ∆t ≈ 10−4 seconds to
10−5 seconds should be used. Looking more closely we observe that FVM can
take larger time steps than SI-FEM and that COR

FVM Avg Max Std
Bend 0.0018 0.0040 0.0009
I-Bend 0.0006 0.0080 0.0011
BC-Bend 0.0002 0.0010 0.0001
Twist 0.0017 0.0040 0.0008
I-Twist 0.0034 0.0080 0.0015
BC-Twist 0.0001 0.0010 0.0001
Squeeze 0.0001 0.0010 0.0001
Stretch 0.0002 0.0010 0.0001
SI-FEM Avg Max Std
Bend 0.0017 0.0020 0.0007
I-Bend 0.0016 0.0040 0.0008
BC-Bend 0.0001 0.0010 0.0001
Twist 0.0010 0.0020 0.0005
I-Twist 0.0015 0.0040 0.0008
BC-Twist 0.0001 0.0010 0.0001
Squeeze NA NA NA
Stretch 0.0002 0.0010 0.0001
COR Avg Max Std
Bend 0.0003 0.0040 0.0005
I-Bend 0.0001 0.0080 0.0003
BC-Bend 0.0003 0.0020 0.0002
Twist 0.0005 0.0020 0.0003
I-Twist 0.0002 0.0080 0.0003
BC-Twist 0.0002 0.0020 0.0002
Squeeze 0.0003 0.0010 0.0002
Stretch 0.0009 0.0020 0.0005

Table 5.3: Variation of average (Avg) and maximum (Max) time step sizes and
standard deviation (Std) across different test cases for different methods. All
numbers are given in seconds. Observe that all methods used a time step size
of the same order and has a low standard deviation. NA means not available.

We also measured the wall clock time of each adaptive time step. FVM var-
ied from 2.63 seconds to 2.73 seconds with standard deviation in the range of

5.8. DISCUSSION AND FURTHER WORK 103

0.0061 seconds to 0.1827 seconds. SI-FEM used on average from 3.3 seconds
to 3.7 seconds with a standard deviation from 0.14 seconds to 0.37 seconds.
Finally COR uses on average from 20.22 seconds to 22.29 seconds with a stan-
dard deviation from 0.42 seconds to 24.89 seconds. This indicates that FVM and
SI-FEM are comparable in performance characteristics whereas COR is more ex-
pensive and has less predictive performance.

Finally we verified which test cases resulted in element inversion. Our re-
sults are summarized in Table 5.4. From the coarse grain summary it appears
that SI-FEM is slightly better to avoid element inversion.

FVM SI-FEM COR
Bend + + +
I-Bend - + † -
BC-Bend - - -
Twist + + +
I-Twist + + -
BC-Twist - - -
Stretch - - +
Squeeze - NA -

Table 5.4: Volume consistency testing. The table summarizes test cases that
kept a positive volume (+) and those that resulted in element inversions (-).
Notice that SI-FEM is slightly better than the others († postive but decreasing).
NA means not available.

In Figure 5.15 we show a still frame after 1.5 seconds of simulated time for
the twist test cases. Figure 5.16 shows for the bend cases and Figure 5.17 the
stretch and squeeze test cases. In all simulations we have observed that the I-
Bend test case has different energy plots between the FVM and SI-FEM method.
In all other test cases we observe similar shaped energy plots between the FVM
and SI-FEM methods. The COR method does have similar shapes as SI-FEM
but time appears to be slowed down. We omitted showing energy plots due
to space considerations. When we examine the actual motion produced by the
three methods. It quickly shows that COR method produces strange behavior
when we have extreme deformations like in the BC-Bend test case and BC-Twist
cases. SI-FEM and FVM produce very similar motions. However, in the case of
BC-Bend SI-FEM shows in our view a better result than FVM. In our opinion
COR seems bad at dealing with the stretch case whereas SI-FEM and FVM looks
more plausible. All methods show problems with the extreme squeeze test case.
However, in our view COR seems to be the worst.

5.8 Discussion and Further Work

We have proposed several implementation specific alternatives and discussed
variations on numerical methods. The results are ready to implement algo-

104 CHAPTER 5. IMPLEMENTATION

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]
−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

Figure 5.15: Top row shows the Twist test case, second row is the I-Twist test
case and the last row is the BC-Twist test case. Columns are FVM, SI-FEM and
COR methods respectively.

rithms which we have backed up with an open source Matlab implementa-
tion [Erleben(2011e)]. In our opinion we have conducted a large scale param-
eter study and performed several convergence experiments and performance
measurement. Our testing includes a total of approximately 1000 computing
hours the equivalent of five days run time on our 8 CPU node cluster.

We have omitted a parameter study of PCG and GMRES methods mostly be-
cause in our experience the default settings from Matlab seem to work well for
us in past projects. It could be interesting to investigate if tuning these param-
eters could provide better results. We did not use preconditioner for GMRES.
As we explained in Section 5.2.1 one can apply a Shur system reduction which
allows usage of PCG and makes preconditioning straightforward. Even if we
gained better accuracy of the Newton system solution we have little hope this
will change the overall convergence behavior as we have initially tried with
direct methods without seeing any change in convergence behavior. The PCG
method has one major advantage over GMRES as it does not need restarts nor
extra internal storage. So from a performance viewpoint one should use the
Shur reduction approach.

From our convergence rate measurements COR and SI-FEM showed the ex-
pected behavior. I-FEM does not appear to be robust. In cases where we varied

5.8. DISCUSSION AND FURTHER WORK 105

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

Figure 5.16: Top row shows the Bend test case, second row is the I-Bend test
case and the last row is the BC-Bend test case. Columns are FVM, SI-FEM and
COR methods respectively.

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

−10

−5

0

5

10

−10

−5

0

5

10

−10

−5

0

5

10

x [m]

T = 1.5 [s]

y [m]

z
 [
m

]

Figure 5.17: Top row is the squeeze test case and the bottom row is the stretch
test case. Columns are FVM, SI-FEM, and COR methods respectively.

106 CHAPTER 5. IMPLEMENTATION

time step size and minimum mesh element size I-FEM showed erratic behavior
and even divergence. Our parameter studies suggested to us that neither warm
starting nor incremental loading seem to be worth the effort when solving the I-
FEM. We speculate that this may be due to the non-linear nature combined with
the high dimensionality of the problem. Maybe a different numerical approach
would be more robust and efficient? We leave this for future work.

Our convergence experiments showed that FVM behaves like SI-FEM and
L-FEM. It is computationally cheap compared to those as it does not require a
PCG method. Besides FVM does not suffer from the time integration instability
that SI-FEM showed in our experiments. Performance study suggest that COR
is far too expensive than FVM and I-FEM is even more expensive or suffers from
robustness issues. Our adaptive time step studies did show that SI-FEM deliver
more visual pleasing results than FVM and can avoid element inversion is some
cases where FVM fails.

In our view for animation purpose the FVM method seems to be the winner
as the most robust and efficient method that can compute physical realistic
motions and allows for a great number of material models. Although COR is a
competitive method in the literature it is hard-wired to the small strain elasticity
model and our experiments suggest that COR is a poor competitor. FVM does
suffer from one major drawback as it is tailored for linear elements assuming a
constant deformation gradient over each element. If this assumption is broken
then FVM can not be used. In our view the L-FEM method seems to be the best
alternative in this case. If one can afford a slightly larger computational cost
then SI-FEM method is to be prefered over FVM and L-FEM.

Having given this recommendation on methods we should mention that
there are subjects we have not touched upon. For instance we have omitted
incompressibility, plasticity, and contact forces. We have restricted our deriva-
tions to linear tetrahedral elements as these are common in computer graphics.
Isoparametric elements can be advantageous for numerical integration of the
weak form equations. We have omitted this subject altogether as this is rarely
seen in computer graphics. Besides the linear elements often results in closed
form solutions or simple numerical approximations so the isoparametric ele-
ments seem in our view to be overkill. In any case we leave all these subjects
for future work.

Chapter 6

Gluing FEM objects and
Contact Forces

Blah bla.

6.1 Introduction

When modeling human tissue with deformable models using finite element
method (FEM) then each tissue in the body is represented by a single FEM
object. For now we can think of a FEM object as a set of algebraic equations
defined on a computational mesh like a tetrahedra mesh. As an example the
Femur bone is represented by one computational mesh and the Tibiea would be
represented by another computational mesh. Ligaments attached to both bones
help keep the knee joint together and these would be represented by a third
FEM object. At the end caps of the bones one finds a thin layer of cartilage
which for all purpose can be modelled as being rigidly attached to the bone
surface. Inbetween the two cartilage layers one finds the Miniscus which are al-
lowed to move freely between the two cartilage surfaces. The synovial fluid fills
up all cavaties in the knee and is kept in place by a membrane. In our models
we will ignore the fluid effects.

From our motivating example we realize that our simulation method need
to be able to deal with two FEM objects that are in static contact. We call
this “gluing”. The dynamic contact is the other type of contact we must deal
with. This involves determing the contact surfaces which change shape during
motion and computing the contact forces that prevent penetration at the contact
surfaces and causes friction at the contact surface.

107

108 CHAPTER 6. ADVANCED

6.2 Gluing Object Together

Before describing how to glue together two objects we will describe the typical
assembly process. Imagine an object with the nodal index set I = {1, 2, . . .}
and that we have a partitioning of into two subsets A ⊂ I and B ⊂ I such that
A ∩ B 6= ∅ and A ∪ B = I. The assembly process of any global finite element
matrix A from a set of element matrices Ae can be written as

Aij =
∑
e∈Eij

Ae
IJ (6.1)

where i, j ∈ I are global nodal indices. The element index set Eij is defined as
the subset of all elements that have both i and j in their index set and I and J
are the corresponding local indices of element ewhich corresponds to the global
indices i and j. Applying the partitioning to the assembly process results in

AAij =
∑
e∈EAij

Ae
IJ (6.2)

and
ABij =

∑
e∈EBij

Ae
IJ. (6.3)

That is we simply restricted Eij to the partitions A and B. Now the global
assembly can be constructed from the partitioned assemblies

Aij =


AAij + ABij if i, j ∈ A ∩ B,
AAij if i, j /∈ B,
ABij if i, j /∈ A.

(6.4)

Now we have the basical building blocks to describe how two mesh objects can
be glued together. Assume we have two objects with node index sets X and
Y. Then after having performed the finite element discretization and assembly
processes we have one set of algebraic equations for each object[

AX 0
−∆tIX IX

] [
~vX

~xX

]
=

[
~bXv
~bXx

]
, (6.5a)

[
AY 0
−∆tIY IY

] [
~vY

~xY

]
=

[
~bYv
~bYx

]
. (6.5b)

Gluing the two objects together means that we have a subset N ⊂ X andM⊂
Y such that we have a one-to-one mapping between N and M. That means
after gluing with haveN =M and (X \ N)∩(Y \M) = ∅ and thatN = X ∪Y.
We may now observe that gluing objects together is similar to the partitioned
assembly process if one relabel the nodes inM with the nodes from N before

6.2. GLUING OBJECT TOGETHER 109

making the global assembly. Thus we have

Aij =


AXij + AYij if i, j ∈ N ,
AXij if i, j /∈ Y \M,

AYij if i, j /∈ X \ N .
(6.6)

Let us introduce the shorthand notation U = X \ N and V = Y \M. We may
now write all equations into one system of equations,

AXUU 0 AXUN 0 0 0

0 AYVV AYVN 0 0 0

AXNU AYNV AXNN + AYNN 0 0 0
−∆tIXUU 0 0 IXUU 0 0

0 −∆tIYVV 0 0 IYVV 0
0 0 −∆tIXNN 0 0 IXNN




~vXU
~vXV
~vXN
~xXU
~xXV
~xXN

 =



~bXv,U
~bXv,V

~bXv,N +~bYv,M
~bXx,U
~bXx,V

~bXx,N +~bYx,M


.

(6.7)
On a side note one should observe that gluing could just as easily have been
done as a pre-processing step on the computational meshes merging them into
one mesh before performing the assembly process as usual.

6.2.1 A more algebraic approach

Let ~x, ~z ∈ RN and ~y, ~w ∈ RM . We are now given two symmetric linear systems[
A B
C D

] [
~x
~y

]
=

[
~a
~b

]
(6.8)

and [
E F
G H

] [
~z
~w

]
=

[
~c
~d

]
(6.9)

We may assume that A, D, E and H are non singular. Rewritting into one
system we have 

A B 0 0
C D 0 0
0 0 E F
0 0 G H



~x
~y
~z
~w

 =


~a
~b
~c
~d

 (6.10)

Exploiting the gluing constraint that ~y = ~w we rewrite the system into
A B 0
C D 0
0 F E
0 H G


~x~y
~z

 =


~a
~b
~c
~d

 (6.11)

This is an over-constrainted system having M too many constraints. As one can
add any together any rows of a linear system without changing the solution we

110 CHAPTER 6. ADVANCED

add the fourth row to the second row and then we drop the fourth row,A B 0
C D + H G
0 F E

~x~y
~z

 =

 ~a
~b+ ~d
~c

 (6.12)

Let us just examine that we have not changed the problem by this rewrite. We
wish to know if we have a solution for

C~x+ (D + H)~y + G~z = ~b+ ~d (6.13)

Do we then also have a solution for the equations

C~x+ D~y = ~b (6.14a)

H~y + G~z = ~d (6.14b)

To prove this we will reorganize the terms in equation (6.13) to yield(
C~x+ D~y −~b

)
= −

(
H~y + G~z − ~d

)
(6.15)

In general D is not equal to H but both are non singular so the equation can
only hold if left and right hand sides are both equal to zero. Thus, we find that
any solution for our combined equation (6.13) will also be a solution for the
two original equations (6.14).

6.3 Signorini Problem

From physics we know that at the contact surface we must have

−σ(~uA) = σ(~uB) (6.16a)

where σ is the Cauchy stress tensor and ~u is the displacement field of respec-
tively body A and body B. For frictionless contact we have for any point on the
contact surface ΓC

σn(~uB) ≤ 0 (6.17a)

~σT (~uA) = ~σT (~uB) = 0 (6.17b)

g ≥ ~n ·
(
~uA + ~uB

)
(6.17c)(

~n ·
(
~uA + ~uB

)
− g
)
σn(~uB) = 0 (6.17d)

where

σn =
∑
i

∑
j

~niσij~nj = ~n · ~t (6.18a)

~σT = σ~n− σn~n = ~t− ~t
(
~n~nT

)
(6.18b)

6.4. HANDLING OF DYNAMIC CONTACT 111

and g is the initial gap (gap function). A fixed surface may exist ΓD where

~u = ~0 (6.19)

and a surface ΓN under external load

σ~n = ~t (6.20)

For frictional contacts adding Coulombs law of friction means

~uT = ~0⇒‖ σT ‖≤ µ ‖ σn ‖ (6.21a)

~uT 6= ~0⇒ σT ≤ −µ ‖ σn ‖
~uT
‖ ~uT ‖

(6.21b)

Kenny Says: Oh dear, here we used displacements and not velocities – also
they are not complementary to forces but rather stress tensors.

6.4 Handling of Dynamic Contact

We have two objects labelled A and B Let us abstractly introduce the contact
region as a point sampling of contact points K. Each contact point has one spa-
tial position associated with it as well as a unit normal direction and a measure
of penetration or gap.

~pi, ~ni, gi∀i ∈ K (6.22)

The normal vector is by convention always pointing in the direction from A to
B.

The computational meshes of A and B may not have nodal positions ~x col-
located with the contact points.

For every contact point we may find the embedding surface triangle from
one object. Thus

~pAi =
∑
a∈T A

Na~xa (6.23)

where T A is the surface triangle from object A that contains ~pi and Na is the
local shape function of node a. Of course we have ~pAi = ~pBi . Similariy we may
find the velocity of the contact point with respect to object A

~̇ ip
A =

∑
a∈T A

Na~va (6.24)

and the contact traction at the contact point would be

~tAi =
∑
a∈T A

Na~ta (6.25)

112 CHAPTER 6. ADVANCED

6.4.1 What the F...?

From FEM discretization we have the nodal velocities (velocity update rule)

A~v = ~b+ ∆tL~t (6.26)

The L-matrix depends on the shape functions and the specific element type
used. One can think of it as a load distribution matrix which converts nodal
traction into nodal forces.

From kinematic relations (FEM approximation) we have the contact point
velocity

~u = L~v (6.27)

Putting it together we get

~u = LA−1
(
~b+ ∆tL~t

)
= ∆tLA−1L~t+ LA−1~b (6.28)

Non penetartion constraint and non-sticking normal force

gi ≥ 0 ⊥ ~nTi ~ti ≥ 0 (6.29)

where gi is the gap funciton of the ith contact point, ~ni is the contact normal of
the ith contact point and ~ti is the traction force at the ith contact point.

From time discretization we have the position update rule

~xt + 1 = ~xt + ∆t~v (6.30)

How do we define the gap function so we can replace it by a Taylor approxima-
tion?

gi = g0
i + ∆t∇~xgi~v ≥ 0 ⊥ ~nTi ~ti ≥ 0 (6.31)

if
g ≈ ~nT (~pAi − ~pBi) (6.32)

then
∇xgi = (∇x~pAi −∇x~pBi)~n (6.33)

and by FEM approximation

∇xpi =
∑
k

∇xNaxa = J~x (6.34)

so
g0
i + ~nTi ∇xPi~v ≥ 0 ⊥ ~nTi ~ti ≥ 0 (6.35)

Chapter 7

Previous Work in Computer
Graphics

Crack development and propagation was studied in [O’Brien and Hodgins(1999)]
where stress tensors are used to form cracks during deformation. A finite el-
ement method is used with linear shape functions on tetrahedral elements.
The formulation is based on the Green strain tensor and the Cauchy stress
tensor split into elastic and viscous terms further a lumped mass matrix is
used. During simulation principal stresses are examined and used to split the
stress tensor into tensile and compressive components. These components are
used to form a separation tensor from which a crack plane can be determined.
There is not a lot of details on the finite element method, instead the book
by Cook et. al. [Cook et al.(2007)Cook, Malkus, Plesha, and Witt] referenced.
[O’Brien et al.(2002)O’Brien, Bargteil, and Hodgins] extends [O’Brien and Hodgins(1999)]
to handle ductile fracture.

In [Fisher and Lin(2001)] penetration depth estimation is done for elastic
objects represented by tetrahedral meshes. Initially a distance field is gener-
ated on the tetrahedral mesh using a fast marching level set method. During
simulation nodal positions are looked up in the deformed distance field using
linear shape functions and the distance values are used as penetration depth
estimations. Contact forces are computed using a penalty based method and
deformations are computed using a finite element method.

In [Hirota et al.(2001)Hirota, Fisher, State, Lee, and Fuchs] quasi static sim-
ulation is done which is based on the first Piola–Kirchhoff stress tensor and
the finite element method. A penalty force method for computing normal
forces between elastic objects is presented. They use a precomputed material
depth which is interpolated during motion to provide a continuous gap function.
Boundary triangles and tetrahedrons are then intersected and the intersection is
triangulated and contact force integrals are evaluated and assembled over each
triangle.

Distance values are used in both [Fisher and Lin(2001)] and [Hirota et al.(2001)Hirota, Fisher, State, Lee, and Fuchs]

113

114 CHAPTER 7. PREVIOUS WORK

to compute penalty forces. In the former work distance fields are updated
during simulation and distance values are used in a spring like penalty force
method. In the latter work distance values are precomputed but not updated
during simulation. The penalty forces are obtained by integrating the intersec-
tion volumes. The two works are similar but not compared to each other.

In [Debunne et al.(2001)Debunne, Desbrun, Cani, and Barr] real time de-
formation is considered where space and time adaptiveness are exploited. The
finite element method is used based on the Green strain tensor, the Cauchy
stress tensor and linear elasticity. The authors add a level of detail hierarchy of
tetrahedral meshes using linear shape functions. The paper cite [O’Brien and Hodgins(1999)]
for details on the the force formula.

In [Müller et al.(2001)Müller, McMillan, Dorsey, and Jagnow] the focus is
on real time deformation and fracturing. They apply a finite element method
using tetrahedral meshes and linear shape functions. The model is very similar
to [O’Brien and Hodgins(1999)]. Only a static analysis is done. To deal with the
dynamics a hybrid simulation is applied. Here free floating parts are treated as
rigid bodies and only as elastic objects during collisions. It seems that all work
based on [O’Brien and Hodgins(1999)] assumes that the Cauchy stress tensor
is assumed to be work conjugate to the Green strain tensor which is not correct.

In [Müller et al.(2002)Müller, Dorsey, McMillan, Jagnow, and Cutler] the first
version of the stiffness warping method is introduced – the corotational linear
finite element method. In this paper a per vertex rotation matrix is used for the
warping which causes ghost forces. The rotations are found by a least square
error approach, where three outgoing edges are selected and the best rotation
of material edges into spatial edges are found.

[Hirota(2002)] developed a finite element method for static equilibrium
simulation using second Piola–Kirchhoff stress tensor and Green strain ten-
sor. Several different materials are used too. The work follows Bonet and
Wood [Bonet and Wood(2000)] in spirit. The essential contribution is a con-
tinuous gap function for computing contact forces.

In [Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw] a finite volume method
(FVM) is derived. Here it is assumed that one has constant strain per tetrahe-
dral element. This corresponds to using linear shape functions. Elastic forces
are treated explicitly in the time integration rather than using a full implicit
method. This corresponds to the semi implicit Euler time stepping scheme we
know from fixed time stepping methods in rigid body dynamics. The paper ac-
tually does not address boundary conditions and explains mainly how to deal
with control volumes not on the boundary of the computational mesh. The pa-
per shows that this finite volume method is numerically the same as a finite
element method using linear shape functions on tetrahedral elements.

In [Hauth et al.(2003)Hauth, Groß, and Straßer] the focus is interactive solid
dynamics using a viscoelastic model and parameters from measurements in a fi-
nite element method setting. The Cauchy stress tensor is used. The Green strain
is used as the work conjugate when writing the elastic energy. This is in contra-
diction with continuum mechanics [Lai et al.(2009)Lai, Rubin, and Krempl].

In [Irving et al.(2004)Irving, Teran, and Fedkiw] the finite volume/element

115

method from [Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw] is used. The
work deals with handling of inversion and degenerated tetrahedral elements.
These problems are detected by looking at the sign of the determinant of the
deformation gradient. The approach works by diagonalizing the deformation
gradient F = UF̂VT . This is done in three steps. First the eigenvalue de-
composition is done of C = FTF = VF̂2V2. Second if V is a reflection i.e.
det (V) = −1 the sign of one of the columns is flipped. Third, one computes
U = FVF̂−1 and examines if det (U) = −1 then one negates the minimum
element of F̂ and the corresponding column of U. After having done the di-
agonalization the constitutive laws are restated and even remodeled in terms
of diagonalized stresses and deformation gradients. This comes with one dis-
advantage as one can not simply use constitutive laws known from continuum
mechanics, one has to restate and reformulate them in this new diagonalized
setting. Elastic forces are treated explicitly whereas damping forces are treated
implicitly.

In [Teran et al.(2005a)Teran, Sifakis, Blemker, Ng-Thow-Hing, Lau, and Fedkiw]
the work [Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw] and [Irving et al.(2004)Irving, Teran, and Fedkiw]
are applied to modeling muscles as well as numerous other level set method
techniques. [Irving et al.(2006)Irving, Teran, and Fedkiw] is an extended ver-
sion of [Irving et al.(2004)Irving, Teran, and Fedkiw]. Here arbitrary Lagrangian
Eulerian (ALE) scheme is introduced using an isoparametric representation. The
result is a more general formulation that covers hexahedral elements.

In [Müller and Gross(2004)] the vertex-based stiffness warping method from
[Müller et al.(2002)Müller, Dorsey, McMillan, Jagnow, and Cutler] is improved
to an element-based method. The method is based on using polar decomposi-
tion for extracting the rotational part of the deformation gradient.

A point-based approach for simulating large deformations similar to smoothed
particule hydrodynamics (SPH) is presented in [Müller et al.(2004)Müller, Keiser, Nealen, Pauly, Gross, and Alexa].
The model is based on Cauchy stress and Green strain tensors. These are taken
to be work conjugate which contradicts definitions from continuum mechanics
[Lai et al.(2009)Lai, Rubin, and Krempl].

[Barbič and James(2005)] presents a model dimension reduction technique
for Saint Venant–Kirchhoff materials leading to efficient sub-space integration.
Rayleigh damping is used.

[Choi and Ko(2005)] introduced the modal warping method which extends
modal analysis to handle large rotational deformations in a manner similar to
stiffness warping. A vertex based rotation is used in modal space. The work is
based on the observation that for small displacements it is possible to keep track
of the rotation of a material point by calculating the curl of the displacement
field. Rayleigh damping is employed.

In [Wu and Heng(2005)] the context is surgical simulation. The authors
use a finite element method based on linear elasticity for small displacements,
Cauchy stress and strain tensors. A hybrid model is developed dividing the
tissue into an operational region and a non-operational region.

A non-linear quasi static finite element method is developed in [Teran et al.(2005b)Teran, Sifakis, Irving, and Fedkiw]

116 CHAPTER 7. PREVIOUS WORK

based on the work [Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw] and
[Irving et al.(2004)Irving, Teran, and Fedkiw]. They discuss linearization of elas-
tic forces in the context of diagonalization and further ensures positive definite-
ness of the resulting stiffness matrix.

In [Duriez et al.(2006)Duriez, Dubois, Kheddar, and Andriot] a linear com-
plementarity problem (LCP) formulation is derived for the contact problem
between deformable models simulated using a linear finite element method.
Further a Gauss–Seidel like algorithm is presented for computing contact force
solutions.

In [Galoppo et al.(2007)Galoppo, Otaduy, Tekin, Gross, and Lin] a layered
dynamics approach is used to model skin deformations for skeleton based char-
acters. The actual skin deformation is computed using a linear finite element
method.

In [Irving et al.(2007)Irving, Schroeder, and Fedkiw] volume conservation
is treated by adding incompressibility constraint to the finite volume/element
method from [Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw]. A pressure
field is solved by requiring the velocity field to be divergence free. Locking is
avoided by using composite tetrahedral elements. A finite volume method dis-
cretization is done of the continuity equation using median vertex centered con-
trol volumes and applying Dirichlet boundary conditions setting the pressure to
zero outside the volume.

In [Otaduy et al.(2007)Otaduy, Germann, Redon, and Gross] adaptive multi-
grid is applied to the corotational linear elasticity finite element method [Müller and Gross(2004)]
with implicit integration.

In [Otaduy and Gross(2007)] constraint-based contact forces for haptic is
considered. Here the corotational linear elastic finite element method is applied.

The corotational linear elasticity finite element method is applied in [Saupin et al.(2007)Saupin, Duriez, and Grisoni]
where a mesh hierarchy is created as the basis for a multigrid solver.

In [Spillmann et al.(2007)Spillmann, Becker, and Teschner], they use both
linear and non-linear finite element methods to demonstrate a scheme for han-
dling collision of deformable objects. Not much detail is given in regards to
specifics of the finite element methods.

[Bargteil et al.(2007)Bargteil, Wojtan, Hodgins, and Turk] introduced an en-
hanced volume preserving plasticity model for the Lagrangian finite elements
method presented by [Irving et al.(2004)Irving, Teran, and Fedkiw]. Further
re-meshing is used to deal with ill conditioning from large plastic flows. A
multiplicative plasticity model is used.

Inversion handling for corotational linear finite element method is treated
in [Schmedding and Teschner(2008)]. The rotation returned by polar decom-
position is improper for an inverted element and is therefore corrected.

In [Georgii and Westermann(2008)] a quaternion-based approach is pre-
sented for computing element rotations for the corotational linear finite element
method. The authors present an efficient sparse block matrix product for using
multigrid methods.

A discontinuous Galerkin finite element method based on corotated linear
elasticity were presented in [Kaufmann et al.(2009)Kaufmann, Martin, Botsch, and Gross].

117

Recent work explores example-based elastic materials [Martin et al.(2011)Martin, Thomaszewski, Grinspun, and Gross].
Here a discrete Green strain field descriptor is used to represent a deformation
example. The work present a method for interpolating motion between these
discrete Green strain descriptors which is used to define a concept of a manifold
and a projection onto this manifold. From these building blocks resulting elastic
forces can be found.

Simulation of coupled rigid and deformable objects were dealt with in [Miguel and Otaduy(2011)]
by applying a partitioning to the linear complementarity problem (LCP) formu-
lation of the contact forces. The partitioning allows for a reformulation of the
LCP taking advantage of separating contact sets acting only on rigid bodies.

Corotational elasticity is used for interactive character skinning in [McAdams et al.(2011)McAdams, Zhu, Selle, Empey, Tamstorf, Teran, and Sifakis].
The authors apply a hexahedral grid and a modified Newton method is outlined
that takes care in ensuring positive definiteness of the tangent stiffness matrix.
The framework is further accelerated by applying multigrid methods where a
matrix-free approach is used taking advantage of the hexahedral grid in the
coarsening.

A new method for meshless models for complex deformable solids was pre-
sented in [Faure et al.(2011)Faure, Gilles, Bousquet, and Pai]. Here a small num-
ber of reference frames are used with associated material-aware shape functions
which allow for heterogenous material properties. Several different kind of ma-
terials are examined and interactive animation rates are achieved.

Mixed implicit and explicit time integration of deformable models were stud-
ied in [Fierz et al.(2011)Fierz, Spillmann, and Harders]. The authors perform
an element-wise analysis of the stiffness matrix to identity which elements
should be implicitly time integrated and which should not resulting in a so
called IMEX solver.

In [Kim and James(2011)] non-linear finite element method for deformable
models is used for character skinning. The authors apply a multi-domain sub-
space deformation method. The main contribution is a “fast sandwich trans-
form” technique that solves the coupling between subdomains.

An Eulerian approach to solid simulation is presented in [Levin et al.(2011)Levin, Litven, Jones, Sueda, and Pai].
Here a single solid object lives in its own Eulerian grid. The idea is simply
to advect the material coordinate field on the grid using an upwind scheme
while the simulation runs. The authors apply Green strain and follow the
method of [Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw] for their dis-
cretization. Contact is solved using Gauss’ principle of least constraint no fric-
tion is present although the authors speculate that staggering can be used to
add friction.

The practice and experience paper by Sin et. al. [Sin et al.(2013)Sin, Schroeder, and Barbič]
surveys several methods used in the field of computer graphics and presents nu-
merical results from the middleware library VEGA.

118 CHAPTER 7. PREVIOUS WORK

Bibliography

[Baraff and Witkin(1998)] D. Baraff and A. Witkin. Large steps in cloth sim-
ulation. In SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 43–54, New York, NY,
USA, 1998. ACM.

[Barbič and James(2005)] J. Barbič and D. L. James. Real-time subspace inte-
gration for st. venant-kirchhoff deformable models. ACM Trans. Graph.,
24:982–990, July 2005.

[Bargteil et al.(2007)Bargteil, Wojtan, Hodgins, and Turk] A. W. Bargteil,
C. Wojtan, J. K. Hodgins, and G. Turk. A finite element method for
animating large viscoplastic flow. ACM Trans. Graph., 26, July 2007.

[Bergou et al.(2008)Bergou, Wardetzky, Robinson, Audoly, and Grinspun]
M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun.
Discrete elastic rods. ACM Trans. Graph., 27(3):1–12, 2008.

[Bonet and Wood(2000)] J. Bonet and R. D. Wood. Nonlinear continuum me-
chanics for finite element analysis. Cambridge University Press, 2000.

[Botsch et al.(2006)Botsch, Pauly, Gross, and Kobbelt] M. Botsch, M. Pauly,
M. Gross, and L. Kobbelt. Primo: coupled prisms for intuitive surface mod-
eling. In Proceedings of the fourth Eurographics symposium on Geometry
processing, SGP ’06, pages 11–20, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

[Bridson et al.(2002)Bridson, Fedkiw, and Anderson] R. Bridson, R. Fedkiw,
and J. Anderson. Robust treatment of collisions, contact and friction for
cloth animation. In SIGGRAPH ’02: Proceedings of the 29th annual confer-
ence on Computer graphics and interactive techniques, pages 594–603, New
York, NY, USA, 2002. ACM.

[Chadwick(1999)] P. Chadwick. Continuum mechanics: concise theory and prob-
lems. Courier Dover Publications, 1999.

[Choi and Ko(2005)] M. G. Choi and H.-S. Ko. Modal warping: Real-time simu-
lation of large rotational deformation and manipulation. IEEE Transactions
on Visualization and Computer Graphics, 11:91–101, January 2005.

119

120 BIBLIOGRAPHY

[Cook et al.(2007)Cook, Malkus, Plesha, and Witt] R. D. Cook, D. S. Malkus,
M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. John Wiley & Sons, 2007.

[Debunne et al.(2001)Debunne, Desbrun, Cani, and Barr] G. Debunne,
M. Desbrun, M.-P. Cani, and A. H. Barr. Dynamic real-time defor-
mations using space & time adaptive sampling. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’01, pages 31–36, New York, NY, USA, 2001. ACM.

[Duriez et al.(2006)Duriez, Dubois, Kheddar, and Andriot] C. Duriez,
F. Dubois, A. Kheddar, and C. Andriot. Realistic haptic rendering of
interacting deformable objects in virtual environments. IEEE Transactions
on Visualization and Computer Graphics, 12:36–47, January 2006.

[Erleben(2011a)] K. Erleben. Hyper elasticity for small and large deformations
based on a lagrangian formulation. Unpublished, 2011a.

[Erleben(2011b)] K. Erleben. The tangent stiffness matrix for for the implicit
nonlinear finite element method. Unpublished, 2011b.

[Erleben(2011c)] K. Erleben. Preliminaries on tensor notation and continuum
mechanics. Unpublished, 2011c.

[Erleben(2011d)] K. Erleben. Implementation tricks and tips for finite element
modeling of hyper elastic materials. Unpublished, 2011d.

[Erleben(2011e)] K. Erleben. hyper-sim. Published online at GitHub
https://github.com/erleben/hyper-sim, November 2011e. Open source
project for simulation methods for hyper elastic materials in physics-based
animation.

[Faure et al.(2011)Faure, Gilles, Bousquet, and Pai] F. Faure, B. Gilles, G. Bous-
quet, and D. K. Pai. Sparse meshless models of complex deformable
solids. ACM Trans. Graph., 30:73:1–73:10, August 2011. doi: http:
//doi.acm.org/10.1145/2010324.1964968. URL http://doi.acm.org/
10.1145/2010324.1964968.

[Fierz et al.(2011)Fierz, Spillmann, and Harders] B. Fierz, J. Spillmann, and
M. Harders. Element-wise mixed implicit-explicit integration for sta-
ble dynamic simulation of deformable objects. In Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’11, pages 257–266, New York, NY, USA, 2011. ACM. doi: http:
//doi.acm.org/10.1145/2019406.2019440. URL http://doi.acm.org/
10.1145/2019406.2019440.

[Fisher and Lin(2001)] S. Fisher and M. C. Lin. Deformed distance fields for
simulation of non-penetrating flexible bodies. In Proceedings of the Euro-
graphic workshop on Computer animation and simulation, pages 99–111,
New York, NY, USA, 2001. Springer-Verlag New York, Inc.

http://doi.acm.org/10.1145/2010324.1964968
http://doi.acm.org/10.1145/2010324.1964968
http://doi.acm.org/10.1145/2019406.2019440
http://doi.acm.org/10.1145/2019406.2019440

BIBLIOGRAPHY 121

[Galoppo et al.(2007)Galoppo, Otaduy, Tekin, Gross, and Lin] N. Galoppo,
M. A. Otaduy, S. Tekin, M. H. Gross, and M. C. Lin. Soft articulated
characters with fast contact handling. Comput. Graph. Forum, 26(3):
243–253, 2007.

[Galoppo et al.(2009)Galoppo, Otaduy, Moss, Sewall, Curtis, and Lin] N. Ga-
loppo, M. A. Otaduy, W. Moss, J. Sewall, S. Curtis, and M. C. Lin. Control-
ling deformable material with dynamic morph targets. In Proceedings of
the 2009 symposium on Interactive 3D graphics and games, I3D ’09, pages
39–47, New York, NY, USA, 2009. ACM.

[Georgii and Westermann(2008)] J. Georgii and R. Westermann. Corotated fi-
nite elements made fast and stable. In Proceedings of the 5th Workshop On
Virtual Reality Interaction and Physical Simulation, pages 11–19, 2008.

[Grinspun(2006)] E. Grinspun. A discrete model of thin shells. In SIGGRAPH
’06: ACM SIGGRAPH 2006 Courses, pages 14–19, New York, NY, USA,
2006. ACM.

[Hauth et al.(2003)Hauth, Groß, and Straßer] M. Hauth, J. Groß, and
W. Straßer. Interactive physically based solid dynamics. In Proceedings of
the 2003 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, SCA ’03, pages 17–27, Aire-la-Ville, Switzerland, Switzerland, 2003.
Eurographics Association.

[Hirota(2002)] G. Hirota. An improved finite element contact model for anatom-
ical simulations. PhD thesis, The University of North Carolina at Chapel
Hill, 2002.

[Hirota et al.(2001)Hirota, Fisher, State, Lee, and Fuchs] G. Hirota, S. Fisher,
A. State, C. Lee, and H. Fuchs. An implicit finite element method for
elastic solids in contact. In Proceedings of the Computer Animation, pages
136–146, 2001.

[Irving et al.(2004)Irving, Teran, and Fedkiw] G. Irving, J. Teran, and R. Fed-
kiw. Invertible finite elements for robust simulation of large deformation.
In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation, SCA ’04, pages 131–140, Aire-la-Ville, Switzerland,
Switzerland, 2004. Eurographics Association.

[Irving et al.(2006)Irving, Teran, and Fedkiw] G. Irving, J. Teran, and R. Fed-
kiw. Tetrahedral and hexahedral invertible finite elements. Graph. Models,
68:66–89, March 2006.

[Irving et al.(2007)Irving, Schroeder, and Fedkiw] G. Irving, C. Schroeder, and
R. Fedkiw. Volume conserving finite element simulations of deformable
models. ACM Trans. Graph., 26, July 2007.

122 BIBLIOGRAPHY

[Joe(1991)] B. Joe. GEOMPACK - a software package for the generation of
meshes using geometric algorithms. Advances in Engineering Software, 13:
325–331, 1991.

[Kaufmann et al.(2009)Kaufmann, Martin, Botsch, and Gross] P. Kaufmann,
S. Martin, M. Botsch, and M. Gross. Flexible simulation of deformable
models using discontinuous galerkin fem. Graph. Models, 71:153–167,
July 2009.

[Kim and James(2011)] T. Kim and D. L. James. Physics-based character skin-
ning using multi-domain subspace deformations. In Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’11, pages 63–72, New York, NY, USA, 2011. ACM. doi: http:
//doi.acm.org/10.1145/2019406.2019415. URL http://doi.acm.org/
10.1145/2019406.2019415.

[Lai et al.(2009)Lai, Rubin, and Krempl] W. M. Lai, D. Rubin, and E. Krempl.
Introduction to Continuum Mechanics. Butterworth-Heinemann, fourth
edition edition, 2009.

[Lanczos(1986)] C. Lanczos. The variational principles of mechanics. Dover
Publications, 4 edition edition, March 1986.

[Levin et al.(2011)Levin, Litven, Jones, Sueda, and Pai] D. I. W. Levin,
J. Litven, G. L. Jones, S. Sueda, and D. K. Pai. Eulerian solid sim-
ulation with contact. ACM Trans. Graph., 30:36:1–36:10, August
2011. doi: http://doi.acm.org/10.1145/2010324.1964931. URL
http://doi.acm.org/10.1145/2010324.1964931.

[Martin et al.(2011)Martin, Thomaszewski, Grinspun, and Gross] S. Mar-
tin, B. Thomaszewski, E. Grinspun, and M. Gross. Example-
based elastic materials. ACM Trans. Graph., 30:72:1–72:8, August
2011. doi: http://doi.acm.org/10.1145/2010324.1964967. URL
http://doi.acm.org/10.1145/2010324.1964967.

[McAdams et al.(2011)McAdams, Zhu, Selle, Empey, Tamstorf, Teran, and Sifakis]
A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran,
and E. Sifakis. Efficient elasticity for character skinning with con-
tact and collisions. ACM Trans. Graph., 30:37:1–37:12, August
2011. doi: http://doi.acm.org/10.1145/2010324.1964932. URL
http://doi.acm.org/10.1145/2010324.1964932.

[Miguel and Otaduy(2011)] E. Miguel and M. A. Otaduy. Efficient simulation
of contact between rigid and deformable objects. In ECCOMAS - Multibody
Dynamics, 2011. URL http://www.gmrv.es/Publications/2011/MO11.

[Müller and Gross(2004)] M. Müller and M. Gross. Interactive virtual mate-
rials. In Proceedings of Graphics Interface 2004, GI ’04, pages 239–246,
School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. Canadian Human-Computer Communications Society.

http://doi.acm.org/10.1145/2019406.2019415
http://doi.acm.org/10.1145/2019406.2019415
http://doi.acm.org/10.1145/2010324.1964931
http://doi.acm.org/10.1145/2010324.1964967
http://doi.acm.org/10.1145/2010324.1964932
http://www.gmrv.es/Publications/2011/MO11

BIBLIOGRAPHY 123

[Müller et al.(2001)Müller, McMillan, Dorsey, and Jagnow] M. Müller,
L. McMillan, J. Dorsey, and R. Jagnow. Real-time simulation of de-
formation and fracture of stiff materials. In Proceedings of the Eurographic
workshop on Computer animation and simulation, pages 113–124, New
York, NY, USA, 2001. Springer-Verlag New York, Inc.

[Müller et al.(2002)Müller, Dorsey, McMillan, Jagnow, and Cutler] M. Müller,
J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. Stable real-time deforma-
tions. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium
on Computer animation, SCA ’02, pages 49–54, New York, NY, USA, 2002.
ACM.

[Müller et al.(2004)Müller, Keiser, Nealen, Pauly, Gross, and Alexa] M. Müller,
R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point based
animation of elastic, plastic and melting objects. In Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer animation,
SCA ’04, pages 141–151, Aire-la-Ville, Switzerland, Switzerland, 2004.
Eurographics Association.

[Müller et al.(2005)Müller, Heidelberger, Teschner, and Gross] M. Müller,
B. Heidelberger, M. Teschner, and M. Gross. Meshless deformations based
on shape matching. ACM Trans. Graph., 24:471–478, July 2005.

[Müller et al.(2007)Müller, Heidelberger, Hennix, and Ratcliff] M. Müller,
B. Heidelberger, M. Hennix, and J. Ratcliff. Position based dynamics. J.
Vis. Comun. Image Represent., 18:109–118, April 2007.

[Nealen et al.(2006)Nealen, Müller, Keiser, Boxerman, and Carlson]
A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. Physically
based deformable models in computer graphics. Computer Graphics
Forum, 25(4):809–836, Dec. 2006.

[Newmark(1959)] N. M. Newmark. A method of computation for structural
dynamics. ASCE Journal of the Engineering Mechanics Division, pages 67–
94, 1959.

[Nocedal and Wright(1999)] J. Nocedal and S. J. Wright. Numerical optimiza-
tion. Springer Series in Operations Research. Springer-Verlag, New York,
1999. ISBN 0-387-98793-2.

[O’Brien and Hodgins(1999)] J. F. O’Brien and J. K. Hodgins. Graphical mod-
eling and animation of brittle fracture. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’99,
pages 137–146, New York, NY, USA, 1999. ACM Press/Addison-Wesley
Publishing Co.

[O’Brien et al.(2002)O’Brien, Bargteil, and Hodgins] J. F. O’Brien, A. W.
Bargteil, and J. K. Hodgins. Graphical modeling and animation of duc-
tile fracture. ACM Trans. Graph., 21:291–294, July 2002.

124 BIBLIOGRAPHY

[Otaduy and Gross(2007)] M. A. Otaduy and M. Gross. Transparent rendering
of tool contact with compliant environments. In Proceedings of the Second
Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems, pages 225–230, Washington,
DC, USA, 2007. IEEE Computer Society.

[Otaduy et al.(2007)Otaduy, Germann, Redon, and Gross] M. A. Otaduy,
D. Germann, S. Redon, and M. Gross. Adaptive deformations with fast
tight bounds. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, SCA ’07, pages 181–190, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[Persson and Strang(2004)] P.-O. Persson and G. Strang. A simple mesh gener-
ator in matlab. SIAM Review, 46(2):329–345, June 2004.

[Quek and Liu(2003)] S. S. Quek and G. R. Liu. Finite Element Method: A Prac-
tical Course: A Practical Course. Butterworth-Heinemann, May 2003.

[Reddy(2008)] J. N. Reddy. An introduction to continuum mechanics:with appli-
cations. Cambridge University Press, 2008.

[Saad(2003)] Y. Saad. Iterative methods for sparse linear systems. Society for
Industrial Mathematics, 2003.

[Sarah F. F. Gibson(1997)] B. M. Sarah F. F. Gibson. A survey of deformable
modeling in computer graphics. Technical Report TR97-19, Mitsubishi
Electric Research Laboratories, December 1997.

[Saupin et al.(2007)Saupin, Duriez, and Grisoni] G. Saupin, C. Duriez, and
L. Grisoni. Embedded multigrid approach for real-time volumetric de-
formation. In Proceedings of the 3rd international conference on Advances
in visual computing - Volume Part I, ISVC’07, pages 149–159, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[Schmedding and Teschner(2008)] R. Schmedding and M. Teschner. Inversion
handling for stable deformable modeling. The Visual Computer (CGI 2008
special issue), 24(7–9):625–633, 2008.

[Selle et al.(2008)Selle, Lentine, and Fedkiw] A. Selle, M. Lentine, and R. Fed-
kiw. A mass spring model for hair simulation. ACM Trans. Graph., 27(3):
1–11, 2008.

[Shewchuk(2002)] J. R. Shewchuk. What is a good linear element? inter-
polation, conditioning, and quality measures. In Eleventh International
Meshing Roundtable, pages 115–126, September 2002.

[Sin et al.(2013)Sin, Schroeder, and Barbič] F. S. Sin, D. Schroeder, and J. Bar-
bič. Vega: Nonlinear fem deformable object simulator. Computer Graphics
Forum, 31(1), 2013.

BIBLIOGRAPHY 125

[Spencer(2004)] A. J. M. Spencer. Continuum mechanics. Courier Dover Publi-
cations, 2004.

[Spillmann et al.(2007)Spillmann, Becker, and Teschner] J. Spillmann,
M. Becker, and M. Teschner. Non-iterative computation of contact
forces for deformable objects. Journal of WSCG, 15(1–3), 2007.

[Teran et al.(2003)Teran, Blemker, Hing, and Fedkiw] J. Teran, S. Blemker,
V. N. T. Hing, and R. Fedkiw. Finite volume methods for the simulation of
skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, SCA ’03, pages 68–74, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics Association.

[Teran et al.(2005a)Teran, Sifakis, Blemker, Ng-Thow-Hing, Lau, and Fedkiw]
J. Teran, E. Sifakis, S. S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw.
Creating and simulating skeletal muscle from the visible human data set.
IEEE Transactions on Visualization and Computer Graphics, 11:317–328,
May 2005a.

[Teran et al.(2005b)Teran, Sifakis, Irving, and Fedkiw] J. Teran, E. Sifakis,
G. Irving, and R. Fedkiw. Robust quasistatic finite elements and flesh
simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, SCA ’05, pages 181–190, New York, NY,
USA, 2005b. ACM.

[Terzopoulos et al.(1987)Terzopoulos, Platt, Barr, and Fleischer] D. Terzopou-
los, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. SIG-
GRAPH Comput. Graph., 21:205–214, August 1987.

[Teschner et al.(2004)Teschner, Heidelberger, Muller, and Gross] M. Teschner,
B. Heidelberger, M. Muller, and M. Gross. A versatile and robust model
for geometrically complex deformable solids. In CGI ’04: Proceedings of the
Computer Graphics International, pages 312–319, Washington, DC, USA,
2004. IEEE Computer Society.

[Wicke et al.(2010)Wicke, Ritchie, Klingner, Burke, Shewchuk, and O’Brien]
M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F.
O’Brien. Dynamic local remeshing for elastoplastic simulation. ACM
Trans. Graph., 29:49:1–49:11, July 2010.

[Wriggers(2002)] P. Wriggers. Computational Contact Mechanics. John Wiley
& Sons, Ltd., 2002.

[Wu and Heng(2005)] W. Wu and P.-A. Heng. An improved scheme of an in-
teractive finite element model for 3D soft-tissue cutting and deformation.
The Visual Computer, 21(8-10):707–716, Sept. 2005.

[Zhu et al.(2010)Zhu, Sifakis, Teran, and Brandt] Y. Zhu, E. Sifakis, J. Teran,
and A. Brandt. An efficient multigrid method for the simulation of high-
resolution elastic solids. ACM Trans. Graph., 29:16:1–16:18, April 2010.

126 BIBLIOGRAPHY

[Zienkiewicz and Taylor(2000)] O. C. Zienkiewicz and R. L. Taylor. The Finite
Element Method Volume 1: The Basis. Butterworth-Heinemann, fifth edi-
tion edition, 2000.

Appendix A

Appendix

A.1 Supplementary Details and Preliminaries

This appendix seeks to provide detailed arguments and refreshing of essential
mathematical knowledge that we felt did not fit well into the main text.

A.1.1 Mathematical Preliminaries

The Gauss divergence theorem can be written as∫
v

∇ · ~adv =

∫
∂v

~a · ~nds, (A.1)

where ~a is any vector field defined over the closed volume v and ∂v is the surface
of the volume with outward unit normal ~n defined everywhere. A second order
tensor is a linear mapping that maps a vector into a vector. We write ~c = A~b
where A is a second order tensor applied to the vector ~b. One may define a
double contraction operator between two second order tensors A and B. The
double contraction is defined as

A : B = tr
(
ATB

)
=
∑
ij

AijBij . (A.2)

This is a very convenient notation for writing compact formulas. Observe that
A : BT = AT : B. We wish to define the divergence of a second order tensor.
From the definition of divergence of a vector we have

∇ · ~c =
∑
i

∂i~ci. (A.3)

127

128 APPENDIX A. APPENDIX

We substitute ~c = A~b. This gives

∇ · (A~b) =
∑
i

∂i(A~b)i (A.4a)

=
∑
i

∂i

∑
j

Aij
~bj

 (A.4b)

=

∑
i

∑
j

(∂iAij)êj


︸ ︷︷ ︸

∇·A

·~b+ A : (∇~b)T (A.4c)

= (∇ ·A) ·~b+ A : (∇~b)T . (A.4d)

If A is symmetric this simplifies to

∇ · (A~b) = (∇ ·A) ·~b+ A : (∇~b). (A.5)

A.1.2 Dealing with Volume Integrals

The Cauchy equation is usually defined in spatial coordinates. Thus, integration
over the spatial volume and multiplication of the admissible test function yields,∫

v

(
ρ~̈x−∇ · σ −~b

)
· ~wdv = 0, (A.6)

where ρ(~x), σ(~x), ~w(~x), and ~b(~x) are functions of spatial coordinates and not
material coordinates. Using dv = jdV we make a change of variables, ~x =
~φ(~X, t), ∫

V

(
ρ~̈x−∇ · σ −~b

)
· ~wjdV = 0 (A.7)

where ρ(~φ(~X, t)), σ(~φ(~X, t)), ~w(~φ(~X, t)) and ~b(~φ(~X, t)) now are functions of
material coordinates. Finally, we divide both the left and right hand side of
the equation with the determinant of the deformation gradient. This yields
the volume integrals we use for deriving the corotational linear finite element
method, ∫

V

(
ρ~̈x−∇ · σ −~b

)
· ~wdV = 0. (A.8)

A.1.3 The Small Strain Tensor

One may find two versions of the small strain tensor (Cauchy strain) tensor,

ε0 =
1

2
(∇0~u+∇0~u

T), (A.9a)

ε =
1

2
(∇~u+∇~uT). (A.9b)

A.2. THE ASSEMBLY PROCESS 129

The first is defined in terms of material derivatives and the second defined in
terms of spatial derivatives. We have added a subscript to the former to distin-
guish between them. The displacement field ~u and the deformation gradient
F = ∇0~x = I +∇0~u(~X) are functions of ~X and not ~x. One may obtain both a
spatial and material version of the Cauchy strain tensor by linearization of the
Euler strain tensor

e =
1

2
(I− (FFT)−1) (A.10)

or the Green strain tensor

E =
1

2
(FTF− I). (A.11)

Thus, ε0 ≈ e and ε ≈ E. In the small strain regime one may for all practical
matters consider∇0~u ≈ ∇~u, so using that assumption one obviously have ε0 = ε
and it really does not matter whether one uses one over the other.

A.2 The Assembly Process

A computational mesh consists of elements which each is defined by a set of
nodes (or quadrature points). One way to store this information is as a two-
dimensional matrix T. Let the total number of elements be given by E and
the total number of nodes of each element by C then T ∈ NE×C . Here row
e stores the nodal indices of the eth element. Observe that the column indices
are local node indices for each row element whereas the row stores the global
nodal indices.

We wish to assemble the global matrix K ∈ R3V×3V where V is the total
number of nodes in the computational mesh. Initially we compute the E local
matrices Ke ∈ R3C×3C . These local matrices are conveniently stored in a lin-
ear array indexed by the element index e. Further, the local matrices can be
computed in an embarrassingly naive parallel manner. In the following all ma-
trices are considered as block matrices. All blocks are of dimension 3× 3. Thus,
indexing is done on blocks and not on entries.

To assemble the global K matrix we simply loop over the elements, for each
element we lookup the corresponding local matrix and the global nodal indices
before mapping these into the proper positions in the global K matrix. This can

130 APPENDIX A. APPENDIX

be written in pseudo code as follows

01 : Algorithm matrix-assembly(. . .)
02 : for e = 1 to E do
03 : for i = 1 to C do
04 : for j = 1 to C do
05 : I ← Te,i

06 : J ← Te,j

07 : KI,J ← KI,J + Ke
i,j

08 : next j
09 : next i
10 : next e
11 : End algorithm

Lines 05-06 are the local to global node indexing. Observe that Line 07 is the
cause for a race condition in a parallel implementation. The pseudo code can
easily be modified to assembly of vectors and we leave this as an exercise for
the reader.

One may solve the race condition by rewriting the algorithm to use a gath-
ering approach rather than the current scattering approach. The trick lies in
rewriting the element loop into a node loop. For this to work we need an aux-
iliary data structure. For each node N we define the element incidence list IN
where each element in the list is a tuple of an element index e and the local
index n of N as seen from element e. The resulting pseudo code is

01 : Algorithm matrix-assembly-2(. . .)
02 : for N = 1 to V do
03 : for each (e, n) ∈ IN do
04 : for j = 1 to C do
05 : J ← Te,j

06 : KN,J ← KN,J + Ke
n,j

07 : next j
08 : next (e, n)
09 : next N
10 : End algorithm

The outer loop in line 02 is embarrassingly naive parallel. This algorithm ver-
sion of the assembly process can be reworked into a matrix-free algorithm for
computing the matrix-vector product of K and some given vector. The change
needed is limited to line 06 and we leave it as an exercise for the reader.

A.3 Power Conjugacy

Here we will investigate work and power conjugacy. Conceptually we will
think of the admissible test function used in the finite element analysis as a

A.3. POWER CONJUGACY 131

virtual velocity. Thus, ~w = ∂~ω
∂t where ~ω could be thought of as the correspond-

ing virtual displacement. This allows us to think physically about the weak
form reformulation as virtual instantaneous power. It allows for an interpre-
tation of the weak form as the principle of virtual power (D’ Lamberts Princi-
ple q[Lanczos(1986)]). Our derivation in the following is not limited to virtual
velocities. If true velocities or displacements were used the same derivation
steps would hold. We keep the ~w notation to make the connection to the finite
element method equations more apparent.

Now the elastic stress term is manipulated as follows

Pσ =

∫
v

σ : ∇~wdv, (A.12a)

=

∫
v

σ :
1

2

(
∇~w + ~wT

)
dv, (A.12b)

=

∫
v

σ : Dwdv. (A.12c)

In the first line we used the symmetry of the Cauchy stress tensor and in the
second line we used the definition of the symmetric rate deformation tensor.
The subscript is used to make it explicit that it is the virtual velocity we are
working with and not the true spatial velocity. Thus, we have shown that σ and
D are power conjugates. Next we will restate the elastic term using the Piola–
Kirchhoff stress tensors. Recall that F~ω = I +∇0~ω. Taking the time derivative
leads to

Ḟ~ω = ∇0 ~w (A.13)

and by the chain rule we find that

∇0 ~w =
∂ ~w

∂~x

∂
(
~X + ~ω

)
∂ ~X

= ∇~wF~ω, (A.14)

where we used ~xω = ~X + ~ω. Thus, we find

∇~w = Ḟ~ωF−1
~ω . (A.15)

The spatial integral can now be rewritten as∫
v

σ : ∇~wdv =

∫
v

σ : Ḟ~ωF−1
~ω dv, (A.16a)

=

∫
V

jσF−T~ω : Ḟ~ωdV, (A.16b)

=

∫
V

P : Ḟ~ωdV. (A.16c)

Leading to the conclusion that the power conjugate of the first Piola–Kirchhoff
stress tensor is the time derivative of the virtual deformation gradient. By defi-
nition we can write the virtual Green strain as

E~ω =
1

2

(
FT~ωF~ω − I

)
(A.17)

132 APPENDIX A. APPENDIX

and taking the time derivative of the virtual Green strain tensor gives

Ė~ω =
1

2

(
ḞT~ωF~ω + FT~ω Ḟ~ω

)
. (A.18)

Using the found relation ∇~w = Ḟ~ωF−1
~ω and the definition of the virtual sym-

metric rate tensor we find

Dw = F−T~ω Ė~ωF−1
~ω . (A.19)

Using this yields ∫
v

σ : Dwdv =

∫
v

σ : F−T~ω Ė~ωF−1
~ω dv, (A.20a)

=

∫
V

jF−1
~ω σF−T~ω : Ė~ωdV, (A.20b)

=

∫
V

S : Ė~ωdV. (A.20c)

Showing that the second Piola–Kirchhoff stress tensor is power conjugate with
the time derivative of the virtual Green strain tensor.

One can show work conjugacy terms using an almost identical approach
assuming ~w to be a virtual displacement. This would lead to the relations

Wσ =

∫
v

σ : ε~wdv =

∫
V

P : F~wdV =

∫
V

S : E~wdV. (A.21)

A.4 Bonet and Wood for the Second
Piola–Kirchhoff Stress Tensor

We will use the second Piola–Kirchhoff weak form for the elastic term see Ap-
pendix A.3 for details on deriving it. We wish to compute

D(S : Ė~ω)[~u] = DS[~u] : Ė~ω +DĖ~ω[~u] : S. (A.22)

Recall that S = 2 ∂Ψ
∂C = ∂Ψ

∂E so by the chain rule we have

DSI,J[~u] =

3∑
K=1

3∑
M=1

4
∂2Ψ

∂CI,J∂CK,M
DEK,M[~u]. (A.23a)

We define the fourth order elasticity tensor C as

CI,J,K,M = CK,M,I,J ≡ 4
∂2Ψ

∂CI,J∂CK,M
. (A.24)

Using our definition we write

DS[~u] = C : DE[~u]. (A.25)

A.4. BONET AND WOOD FOR THE SECONDPIOLA–KIRCHHOFF STRESS TENSOR133

Using this we find

D(S : Ė~ω)[~u] = Ė~ω : C : DE[~u] +DĖ~ω[~u] : S. (A.26)

We have
DF[~u] = ∇0~u = ∇~uF, (A.27)

so using the product rule on the definition of the Green strain tensor leads to

DE[~u] =
1

2

(
(DF[~u])

T
F + FTDF[~u]

)
, (A.28a)

=
1

2

(
FT∇~uTF + FT∇~uF

)
, (A.28b)

= FT
(

1

2

(
∇~u+∇~uT

))
F, (A.28c)

= FT εF. (A.28d)

It follows that Ė~ω = DE[~̇ω] = DE[~w] so

D(S : Ė~ω)[~u] = DE[~w] : C : DE[~u] +DĖ~ω[~u] : S. (A.29)

From the definition of the Green strain tensor we find the time derivative

Ė~ω =
1

2

(
ḞTωFω + FTω Ḟω

)
. (A.30)

The directional derivative is then

DĖ~ω[~u] =
1

2

((
DḞω[~u]

)T
Fω + (DFω[~u])

T
Ḟω

+ḞTωDFω[~u] + FTωDḞω[~u]
)
.

(A.31)

Since DF~ω[~u] = ∇0~u, Ḟ~ω = ∇0 ~w and DḞ~ω[~u] = 0 we have

DĖ~ω[~u] =
1

2

(
∇0 ~w

T∇0~u+∇0~u
T∇0 ~w

)
. (A.32)

Substitution of this into our derivation and using the symmetry of S results in

D(S : Ė~ω)[~u] = DE[~w] : C : DE[~u] + S : ∇0~u
T∇0 ~w (A.33)

which becomes

D(S : Ė~ω)[~u] = FT ε~wF : C : FT εF + S : ∇0~u
T∇0 ~w. (A.34)

Now in principle all one need to do is to make the approximations and rewrite
the equations into the form

∑
a,b ~waKa,b~ub as where done in Section 4.4.

	Tensors and Mechanics
	Introduction to Tensor Algebra and Calculus
	A Quick Primer on Continuum Mechanics
	The Kinematics – The Strain Tensors
	The Dynamics – The Stress Tensors and Power
	Constitutive Equations

	Direction Derivatives
	Summary

	Time Integration
	Time Discretization
	Time Discretization

	Newmark Time Integration
	The Linear Case
	The Non-linear Case
	Full Implicit Backward Euler Time Integration

	Summary

	Lagrangian Formulations
	Introduction
	The Corotational Linear Elastic Finite Element Method
	The Physical Model
	Weak Form Reformulation
	The Constitutive Equation
	The Finite Element Discretization
	Shape Functions
	The Corotational Formulation

	The Non-linear Finite Element Method for Large Displacements
	The Equations of Motion
	The Finite Element Method

	The Finite Volume Method
	Summary

	Tangent Stiffness Matrix
	Introduction
	The Non-linear Finite Element Method
	The Governing and Constitutive Equations
	The Finite Element Method

	The Straightforward Calculus Approach
	The Bonet and Wood Approach
	Computing the Elasticity Tensor A
	Material Examples

	Summary

	Implementation
	Introduction
	The Non-linear Newton Method
	Solving the Newton System
	Is the Newton Direction a Descent Direction?
	The Line–Search Method
	The Stopping Criteria
	Generating Good Starting Iterates
	Incremental Loading
	Computing the Elasticity Tensor
	Built-in Matlab Support

	The Influence of Boundary Conditions
	Applying Surface Traction
	Using Preconditioning
	Mesh Quality Measures
	Numerical Experiments
	Meshing Issues
	Parameter Selection
	Performance Measurements
	Convergence Rates
	Mesh Convergence Experiment
	Time Step Convergence Experiment
	Adaptive Time Stepping

	Discussion and Further Work

	Advanced
	Introduction
	Gluing Object Together
	A more algebraic approach

	Signorini Problem
	Handling of Dynamic Contact
	What the F...?

	Previous Work
	Appendix
	Supplementary Details and Preliminaries
	Mathematical Preliminaries
	Dealing with Volume Integrals
	The Small Strain Tensor

	The Assembly Process
	Power Conjugacy
	Bonet and Wood for the Second Piola–Kirchhoff Stress Tensor

