
U n i v e r s i t y o f C o p e n h a g e n

Build your own 2D
simulator
2D Hyperelastic materials using
the Finite Volume Method

Kenny Erleben
Department of Computer Science



The Problem

U n i v e r s i t y o f C o p e n h a g e n Build Your Own Simulator 20–04–2024 2U n i v e r s i t y o f C o p e n h a g e n Build Your Own Simulator 20–04–2024 2



The Idealization Process (1/2)

We have the Cauchy equation (motion of equation).

ρ0ẍ = b0 +∇X · P, ∀X ∈ Ω0 .

Subscript 0 means the physical quantity is given in material coordinate spaces, X. Spatial
coordinates are written as x and not X.
We will apply boundary conditions for a known traction field t on the boundary, ΓT ,

PN = t, ∀X ∈ ΓT

As well as Dirichlet conditions to keep a subset of the boundary fixed, ΓD ,

x = const, ∀X ∈ ΓD
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The Idealization Process (2/2)

We use a constitutive equation between 2nd Piola–Kirchhoff stress tensor and Green strain
tensor

S = λtr (E) I+ 2µE

which is related to the 1st Piola Kirchhoff stress tensor

P = FS

and the Green strain is by definition given as

E =
1

2
(FTF− I)
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Discretization Choices That is Given
• We will use a finite volume method.
• We will use a 2D triangular computational domain.
• We will use median dual vertex centered control volume.
• We will assume that deformation gradients are constant over triangular elements.
• We will use simple first-order forward finite difference approximations in time.
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The Computational Mesh

Observe we have three types of ”real” boundaries, ΓT and ΓD are both non-free kinds of
boundaries, and the third is the ”free” boundary. The inner boundary is not a real boundary,
it is just the interface between the computational cells.
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The Cell Notation
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The Boundary Notation

We use γ ∈ {α, β, ji , ki} as index in summations so Se
γ means Se

α, Se
β, Se

ji , and Se
ki .
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Write up Volume Integrals
Let Ai denote the control volume of the ith vertex∫

Ai

ρ0ẍidA =

∫
Ai

b0dA +

∫
Ai

∇X · PdA

With some hard work using Leibniz rule, Piecewise continuity of integrals, Midpoint
approximation rule, and Gauss–Divergence Theorem. One derives

mi ẍi = Aib0︸︷︷︸
≡fext

i

+
∑

e

∑
γ

∫
Se
γ

PNdS

where γ runs over all boundary surfaces, ie. it can be α, β or some ji , ki . The nodal mass is
mi = Aiρ0. The superscript on fext indicates this force term is an external force on the
system.
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The Boundary Conditions
If Se

γ is on the boundary of the domain we can apply the boundary condition t = PN.
• On the “free” boundary we have t = 0 so∫

Se
γ

PNdS = 0

• For non-free we have prescribed known constant traction t so∫
Se
γ

PNdS = tleγ

where leγ is the length of piece wise linear boundary Se
γ .

Meaning we can restrict the boundary summation to internal boundaries only.
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The Traction Forces
Thus,
• We split out the terms from non-free boundaries

mi ẍi = fext
i + fti +

∑
γ

∫
Se
γ

PNdS

Now γ is only running over internal boundary edges (α or β for each e) and δ over
external boundaries

fti ≡
∑
δ

tleδ

• The vector fti is termed the “nodal” traction force to distinguish it from the traction
field t.
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Computing the Deformation Gradient
Consider the eth triangle consisting of nodes i , j and k. Recall

dx = FdX

Define ge
ji = xj − xi and Ge

ji = Xj − Xi and so on. Now

ge
ji = FeGe

ji and ge
ki = FeGe

ki

Putting it together [
ge

ji ge
ki
]︸ ︷︷ ︸

De

= Fe [Ge
ji Ge

ki
]︸ ︷︷ ︸

De
0

Now we can compute the deformation gradient as Fe = De (De
0)

−1.
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Computing the Stress and Strain Tensors
As Fe is known and constant over e then we may compute the Green strain tensor

Ee =
1

2

(
(Fe)T Fe − I

)
and the 2nd Piola–Kirchhoff tensor

Se = λtr (Ee) I+ 2µEe

and finally 1st Piola–Kirchhoff tensor

Pe = FeSe

Observe that since Fe is constant per triangle so will Se and Pe be.
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The Grid Layout

Observe that Pe and Ee are also stored at face centers.
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Computing Boundary Integrals
∫

Se
γ
PNdS

In the usual FVM approach one would apply the midpoint approximation rule, hence∫
Se
γ

PNdS ≈ PeNe
γ leγ

Second thoughts
• Pe is constant over the entire triangle so we know its value at the midpoint
• We need to pre-compute Ne

γ and leγ .
As our control volume looks a bit “complex” the last parts can be a bit “difficult” to
implement.
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The “Clever” Approach (1/2)

Observation: The closed surface integral over a constant tensor field is always zero∮
S
PNdS = 0

For eth triangle we make the “imaginary” closed surface integral∫
Se

ji

PeNdS +

∫
Se

jk

PeNdS +

∫
Se
α

PeNdS +

∫
Se
β

PeNdS = 0

We then slightly rewrite this into∫
Se
α

PeNdS +

∫
Se
β

PeNdS = −
∫

Se
ji

PeNdS −
∫

Se
jk

PeNdS

U n i v e r s i t y o f C o p e n h a g e n Build Your Own Simulator 20–04–2024 16U n i v e r s i t y o f C o p e n h a g e n Build Your Own Simulator 20–04–2024 16



The “Clever” Approach (2/2)

We have found the equivalence relation from the fact that we have constant stress tensors,∫
Se
α

PeNdS +

∫
Se
β

PeNdS = −
∫

Se
ji

PeNdS −
∫

Se
jk

PeNdS

This means in computations we can now replace the sum of the surface integrals Se
α and Se

β

with the negative sum of the surface integrals Se
ji and Se

jk . The numerical values will be
equivalent.

Having done the replacement we are now ready to apply the midpoint approximation rule
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The Midpoint Approximation Rule
After the replacement of the equivalent surface integrals we have,

fei ≡ −
∫

Se
ji

PeNdS −
∫

Se
jk

PeNdS

Using midpoint approximation rule and observing that lji =‖ Xj − Xi ‖, we have,

fei ≡ −
1

2
PeNe

ji lji −
1

2
PeNe

ki lki

Thus, we have
mi ẍi = fext

i + fti +
∑

e
f e
i
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Time Discretization

We have
mi ẍi = fext

i + fti +
∑

e
f e
i︸ ︷︷ ︸

≡ftotal
i

From nodal velocity vi = ẋi we have
coupled first order ODEs

v̇i =
1

mi
ftotal
i

ẋi = vi

Apply first-order finite difference
approximations

vt+∆t
i = vt

i +
∆t
mi

ftotal
i

xt+∆t
i = xt

i +∆tvt+∆t
i

Notice that the velocity update is explicit
whereas the position update is implicit.
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The Final Numerical Method
A single simulation step:

Step 1 Compute deformation gradients Fe for all e
Step 2 Compute Green strain tensors Ee for all e
Step 3 Compute 2nd Piola–Kirchhoff stress tensor Se for all e
Step 4 Compute 1st Piola–Kirchhoff stress tensor Pe for all e
Step 5 Compute elastic forces

∑
e f

e
i for all i

Step 6 Compute total forces ftotal
i for all i

Step 7 Compute velocity update vt+∆t
i for all i

Step 8 Compute position update xt+∆t
i for all i

Step 9 Increment time t ← t +∆t
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The Input Parameters

• The triangle mesh
• The surface traction field t (if any)
• The material density field ρ0

• The body force density field b0

• The Lamé parameters λ and µ

• The time step size ∆t
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Tip: Getting A Computational Mesh for Free
Code reusability is good:
• FVM handout has meshing tool for centroid dual vertex centered control volume

Computational Mesh Zoomed View

This can be modified to a median dual vertex-centered control volume.
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The Model Collapse
Assume compression/extension in the x-axis then

x =

[
a 0
0 1

]
X

F =
∂x

∂X
=

[
a 0
0 1

]
C = FTF =

[
a2 0
0 1

]
E =

1

2
(C− I) =

[
1
2

(
a2 − 1

)
0

0 0

]
S = λtr (E) I+ 2µE =

[(
µ+ λ

2

) (
a2 − 1

)
0

0 λ
2

(
a2 − 1

)]
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The Model Collapse
Rewrite stress tensor

S =

[(
µ+ λ

2

) (
a2 − 1

)
0

0 λ
2

(
a2 − 1

)]
P = FS =

[
a 0
0 1

] [(
µ+ λ

2

) (
a2 − 1

)
0

0 λ
2

(
a2 − 1

)]
=

[(
µ+ λ

2

) (
a3 − a

)
0

0 λ
2

(
a2 − 1

)]
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The Model Collapse
Let α =

(
µ+ λ

2

)
, β = λ

2 then

P =

[
α
(
a3 − a

)
0

0 β
(
a2 − 1

)]
We can consider α > 0 as Lamé first parameter λ is always positive and the second µ is
positive for most materials too.
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The Model Collapse

From
Pxx = α

(
a3 − a

)
We make the plot on the right.

Observe, no response for a = 0 and a ± 1.

For |a| < 1√
3
≈ 0.57 material no longer

resists compression.
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Assignment

• Show all the steps from the initial volume integral on top of Page 9 to the discrete
form at the bottom that only contains the piece-wise linear surface integrals.
• Observe that we wrote the Cauchy equation using “material” space as the domain

rather than the usual “spatial” setting given as

ρẍ = b+∇ · σ

Note that in the material setting we have x(X) whereas in the spatial setting we
simply have x. Show how to get from the spatial setting to the material setting1?

1Hint ρ0 and b0 are not the same as ρ and b.
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Assignment

• Discuss computational benefits of Fe = De (De
0)

−1 on Page 12 Hint: What can be
pre-computed?
• Discuss mesh properties needed to make sure De

0 is invertible.
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Assignment

• Assume a FEM approach with the local linear shape functions

we
i (X) =

A(Xj ,Xk ,X)

A(Xi ,Xj ,Xk)

where the A’s are areas of respective triangles. For any point X inside the triangle e

x(X) ≈
∑

a∈{i,j,k}
we

a (X)xa

Compute F(X) = ∂x(X)
∂X

• Compare the FEM formula for F against our formula from Page 12, what are the
differences?
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Assignment
The constitutive equation on Page 13 needs material parameters λ and µ.
• Find parameter values for the Lamé parameters λ and µ for real known materials.

Make a table of the values that you find.

Remark: It is beneficial to use cartoon-like parameter values at first when implementing
and debugging a simulator. Stiff materials can make one fight ill-conditioned systems rather
than finding the real bugs in the code. For instance, Young Modulus of 1000000.0 Pa,
Poisson ratio of 0.3, and mass density of 1000 Kg/m3, and ∆t = 0.001 s.
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Assignment
Consider the theory covered from Page 15 to Page 18.
• Why is the formula

fei ≡ −
1

2
PeNe

ji lji −
1

2
PeNe

ki lki

more “convenient” than
fei ≡ PeNe

αleα + PeNe
β leβ

Hint: consider whether you actually have to build the CV and whether the summation
order has any importance.
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Assignment

• Analyze each input parameter on Page 21 – decide upon what its “value” should be
and why
• Make hypotheses about how each input parameter affects a simulation
• Conduct experiments to verify your hypotheses

Some Inspiration
• Examine the quality of triangle meshes
• Examine volume, momentum, mechanical energy conservation
• Examine stability depending on Lamé parameters and ∆t
• Examine symmetry behavior
• Examine robustness in relation to setting t

• ...
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Assignment

• From where was the value 1√
3

on Page 26 derived? Hint: Inflection points have slope
zero.
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