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Background

• The Finite Element Method (FEM) has a long history. It has been used and studied in
many fields, including mathematics, engineering, computer science, etc. Its origins go
back to before we even had computers.
• It is a method for discretizing and solving a partial differential equation. FEM is based

on strong mathematical concepts that allow one to solve pretty much anything as long
as one follows the “five” step recipe shown on the following pages. One is given a
guarantee that things will work, and one will be able to compute a solution.
• FEM has many more strengths, but one thing that stands out with previous methods

we have looked at is that it can be applied to unstructured meshes. That is for
instance triangle or tetrahedral meshes.
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The Basic Steps
The five basic steps in deriving a FEM for a given problem
• STEP 1: Rewrite the problem as a volume integral
• STEP 2: Do integration by parts
• STEP 3: Make an approximation
• STEP 4: Choose a test function
• STEP 5: Compute a solution

Now let us try it out!
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First we need a Problem
We wish to find the unknown function y(x) : R 7→ R on some domain x ∈ [x1..xn]. All we
know is some differential equation

∂2y(x)
∂x2

= c(x)

where c(x) : R 7→ R is some known function; also we are given some boundary conditions

y(x1) = a ,
y(xn) = b .

We will find y(x) using the finite element method (FEM).

U n i v e r s i t y o f C o p e n h a g e n Introduction to FEM 20–04–2024 4



STEP 1 – Rewrite into a Volume Integral
First, we multiply by an arbitrary v(x) defined so we have v(x1) = v(xn) = 0 and then we
integrate over our domain ∫ xn

x1
v(x)

(
∂2y(x)
∂x2

− c(x)
)

dx = 0

The v(x) function is called a test function or a weight function. We will go with the name
test function from here on.
To remember the name, think of this function as a “random” valued function that is testing
if the original differential problem holds at a specifically chosen point x .
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Test Functions and Boundary Conditions
The boundary conditions are a bit trivial for this 1D example since they are point based.
• Technically for more complicated boundary conditions, one would apply the same step

to the boundary conditions as these too are just some partial differential equations.
• Afterwards one just adds the transformed governing equation term with the

transformed boundary condition term and ends up with a single scalar integral
equation.

Let us try and write this out∫ xn

x1
v(x)

(
∂2y(x)
∂x2

− c(x)
)

dx +

∫ xn

x1
va(x) (y(x)− a) dx +

∫ xn

x1
vb(x) (y(x)− b) dx = 0

We introduce two new test functions, one for each of our boundary equations. Here
va(x) = 0 for all x 6= x1 and vb(x) = 0 for all x 6= xn.

U n i v e r s i t y o f C o p e n h a g e n Introduction to FEM 20–04–2024 6



Test Functions and Boundary Conditions
Because va(x) and vb(x) in our example only are non-zero at the points x1 and xn the
integrals collapse and we have,∫ xn

x1
v(x)

(
∂2y(x)
∂x2

− c(x)
)

dx + va(x1) (y(x1)− a) + vb(xn) (y(xn)− b) = 0 .

To keep the math in this introduction lean and mean we will ‘ìgnore” the boundary terms in
the rest of the introduction of the FEM machinery.
• Obviously the point-wise nature makes the boundary conditions in our example

somewhat trivial to deal with.
• The idea we presented is general and can be applied to any kind of boundary condition

equation. In the general case then one could need to perform the same further steps as
we will show in the first term coming from the governing equation.
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The Masking Property of Test Functions
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STEP 2 – Integration by Parts
So we have∫ xn

x1
v(x)

(
∂2y(x)
∂x2

− c(x)
)

dx =

∫ xn

x1
v(x)∂

2y(x)
∂x2

dx −
∫ xn

x1
v(x)c(x)dx = 0

Integration by parts of the first term on the right-hand-side (rhs) gives us[
v(x)∂y(x)

∂x

]xn

x1
−
∫ xn

x1

∂v(x)
∂x

∂y(x)
∂x dx −

∫ xn

x1
v(x)c(x)dx = 0

Using v(x1) = v(xn) = 0 and cleaning up yields∫ xn

x1

∂v(x)
∂x

∂y(x)
∂x dx +

∫ xn

x1
v(x)c(x)dx = 0
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What Happened?
Originally we had the term ∫

v(x)∂
2y(x)
∂x2

dx

Here y(x) needs to be twice continuously differentiable. Now we have∫
∂v(x)
∂x

∂y(x)
∂x dx

Now y(x) only needs to be continuously differentiable.

Strong Form ⇒ Weak Form
The downside is that v(x) must be differentiable.
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STEP 3 – Make an Approximation
Rather than finding y we wish to find a good approximation ỹ which we write abstractly as

y(x) ≈ ỹ(x) =
n∑

i=1

Ni(x)ŷi

That is we have broken up our continuous function into a set of n discrete values (ŷi , xi)
that we somehow combine using some weighting/interpolation scheme given by the global
shape functions Ni . The wording “shape function ” requires a bit of attention.
• A more catch-all term would be a basis function. We like the word shape function as it

indicates the connection to the geometry of the elements. The Ni function tells us how
things vary inside an element.
• In FEM textbooks and on web pages the word trial functions are often used. It really

refers to the approximation function ỹ(x). We just call this an “approximation” and
try to avoid the word “trail” as it semantically gets mixed with the word “test”.
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Introducing Matrix Notation
More elegantly we write the approximation compactly using matrix notation,

ỹ(x) =
n∑

i=1

Ni(x)ŷi =
[
N1(x) · · · Nn(x)

]︸ ︷︷ ︸
N(x)

ŷ1
...

ŷn


︸ ︷︷ ︸

ŷ

= Nŷ

Observe that N is a matrix and not a row vector. Later in a higher-dimensional domain, we
will see that N will change dimensions.
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A Few Notes on the Shape Functions
The shape function should interpolate the points

Ni(x) =
{
1 x = xi

0 x = xj ∧ j 6= i

and the sum of all the function values at a given point x is 1∑
i

Ni(x) = 1

The last condition is known as the partition of unity.
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An Illustration of the Computational Mesh
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Let us use the Hat-Function
Using linear interpolation yields the so-called hat functions

Ni(x) = max

(
0, 1−

∣∣∣∣xi − x
∆x

∣∣∣∣) =


1− xi−x

∆x xi−1 ≤ x ≤ xi

1− x−xi
∆x xi < x ≤ xi+1

0 otherwise
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Using the Approximation
So we have ∫ xn

x1

∂v(x)
∂x

∂y(x)
∂x dx +

∫ xn

x1
v(x)c(x)dx = 0

Let us insert the approximation into our integrals∫ xn

x1

∂v(x)
∂x

∂N(x)
∂x ŷdx +

∫ xn

x1
v(x)c(x)dx = 0

This is the main trick of the finite element method (FEM)

FEM is a method of Approximation
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STEP 4 – Choose a Test Function
We will make the specific choice of a test function

v(x) ≡ N(x)δy

where δy ≡
[
δy1 · · · δyn

]T are understood to be a vector of completely arbitrary values
at the discrete points, the values are like stochastic variables. There is still the matter of
the boundaries. Technically, we should have δyk be random for all 1 < k < n but
δy1 = δyn = 0. A more precise statement would be,

δy ≡
[
0 δy2 · · · δyn−1 0

]T
.

For the test functions va(x) and vb(x) we see that we would have δya ≡
[
δy1 0 · · · 0

]T
and δyb ≡

[
0 · · · 0 δyn

]T and then define va(x) ≡ N(x)δya and vb(x) ≡ N(x)δyb .
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Using the Test Function
Inserting our choice of test function yields∫ xn

x1

∂ (N(x)δy)
∂x

∂N(x)
∂x ŷdx +

∫ xn

x1
N(x)δyc(x)dx = 0

Since N(x)δy is a scalar, it holds that N(x)δy = (N(x)δy)T

∫ xn

x1

(
∂ (N(x)δy)T

∂x

)
∂N(x)
∂x ŷdx +

∫ xn

x1
(N(x)δy)T c(x)dx = 0
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Cleaning Up
Now

δyT
((∫ xn

x1

∂NT (x)
∂x

∂N(x)
∂x dx

)
ŷ +

∫ xn

x1
NT (x)c(x)dx

)
= 0

must hold for all arbitrary values of δy so(∫ xn

x1

∂NT (x)
∂x

∂N(x)
∂x dx

)
︸ ︷︷ ︸

K

ŷ +

∫ xn

x1
NT (x)c(x)dx︸ ︷︷ ︸

−f

= 0

Thus we now have a simple linear system

Kŷ = f
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STEP 5 – Compute a Solution
Compute (numerically or analytically)

K =

∫ xn

x1

∂NT (x)
∂x

∂N(x)
∂x dx

f = −
∫ xn

x1
NT (x)c(x)dx

then we have
Kŷ = f

We are almost done, we just need to add the boundary conditions before we can solve the
linear system for our solution ŷ .
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Remember to Add Boundary Conditions
We have the system

K11 K12 · · · K1,n−1 K1n
K21 K22 · · · K2,n−1 K2n

...
...

. . .
...

...
Kn−1,1 Kn−1,2 · · · Kn−1,n−1 Kn−1,n
Kn1 Kn2 · · · Kn,n−1 Knn




ŷ1
ŷ2
...

ŷn−1

ŷn

 =


f1
f2
...

fn−1

fn


Inserting the boundary conditions ŷ1 = a and ŷn = b

1 0 · · · 0 0
K21 K22 · · · K2,n−1 K2n

...
...

. . .
...

...
Kn−1,1 Kn−1,2 · · · Kn−1,n−1 Kn−1,n

0 0 · · · 0 1




ŷ1
ŷ2
...

ŷn−1

ŷn

 =


a
f2
...

fn−1

b
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What happened with the boundary integrals?
Recall how we defined δy, δya and δyb . The substitution we just made,

1 0 · · · 0 0
K21 K22 · · · K2,n−1 K2n

...
...

. . .
...

...
Kn−1,1 Kn−1,2 · · · Kn−1,n−1 Kn−1,n

0 0 · · · 0 1




ŷ1
ŷ2
...

ŷn−1

ŷn

 =


a
f2
...

fn−1

b

 ,

is a consequence of how we set up our test functions. Remember,

δy ≡
[
0 δy2 · · · δyn−1 0

]
δya ≡

[
δy1 0 · · · 0 0

]
δyb ≡

[
0 0 · · · 0 δyn

]
The trick is to ignore the zeros for the governing equation during assembly and add them in
again after the assembly.
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Remember to Add Boundary Conditions
The rest is basically, just linear algebra one-on-one, we move “known” parts to the
right-hand side of the equation. This yields,

1 0 · · · 0 0
0 K22 · · · K2,n−1 0
...

... . . . ...
...

0 Kn−1,2 · · · Kn−1,n−1 0
0 0 · · · 0 1




ŷ1
ŷ2
...

ŷn−1

ŷn

 =


a

f2 − K21 a − K2n b
...

fn−1 − Kn−1,1 a − Kn−1,n b
b


We are now ready to use our favorite linear system solver on this system.
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Remember to Add Boundary Conditions
To summarize the recipe: The boundary conditions are

ŷ1 = a
ŷn = b

We make the modifications to f and K as follows

fi ← fi − Ki1a − Kinb ∀i ∈ 1, . . . , n

and

K1i ←

{
1 if i = 1

0 otherwise

similar for Kni . This can be done more elegantly in matrix notation.
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Boundary Conditions in Matrix Form
Assume a discrete model

Kŷ = f

where ŷ , f ∈ Rn and K ∈ Rn×n. Now we wish to apply Dirichlet boundary conditions

D ≡ {i |ŷi = di}

then
F ≡ {i |i /∈ D}

Make partitioning of original system[
KFF KFD
KDF KDD

] [
ŷF
ŷD

]
=

[
fF
fD

]
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Inserting the Boundary Condition
Insert Dirichlet boundary conditions

IŷD = d

Into partitioned system [
KFF KFD
0 I

] [
ŷF
ŷD

]
=

[
fF
d

]
Resulting in the reduced system

KFF ŷF = fF − KFDd

Notice that boundary conditions end up as extra term on right hand side (extra source term)
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Where did the Elements go?
Its called the finite element method but we have derived an approximate solution in a global
setting.∫ xn

x1

∂NT

∂x
∂N

∂x ŷdx +

∫ xn

x1
NT cdx =

∑
e

(∫ xj

xi

∂(Ne)T

∂x
∂Ne

∂x ŷedx +

∫ xj

xi

(Ne)T cdx
)

= 0

where e is the element between two consecutive nodes xi and xj .
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The Local Shape Functions
We have

Ne(x) =
[
Ne

i (x) Ne
j (x)

]
ŷe =

[
ŷi
ŷj

]
where the local shape functions are

Ne
i =

xj − x
xj − xi

and Ne
j =

x − xi
xj − xi
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The Spatial Derivatives
So assuming equidistant xi ’s we have ∆x = xj − xi and

Ne
i =

xj − x
∆x and Ne

j =
x − xi
∆x

Further
∂Ne

i
∂x =

−1
∆x and

∂Ne
j

∂x =
1

∆x
which are constants independent of x

U n i v e r s i t y o f C o p e n h a g e n Introduction to FEM 20–04–2024 29



The Finite Elements
So ∫ xj

xi

∂(Ne)T

∂x
∂Ne

∂x ŷedx =
1

∆x2

([
−1
1

] [
−1 1

])
ŷe
∫ xj

xi

dx

=
1

∆x

[
1 −1
−1 1

]
︸ ︷︷ ︸

Ke

ŷe

and
fe = −

∫ xj

xi

(Ne)T cdx

Now for this educational example we simply set c(x) = 0 so fe = 0
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Assembling local Elements into a Global System
So we finally have

Kŷ =
∑

e
Ke ŷe =

∑
e
fe = f

Or more algorithmically we have . . .
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The Computer Scientist at Work
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The Final Assembly Algorithm

for all e
Ke ← compute element matrix
fe ← compute element vector

next e
K← zeroes(n, n)
f← zeroes(n, 1)
for all e
(i , j)← local to global(1, 2)
Kii ← Kii + Ke

11

Kij ← Kij + Ke
12

Kji ← Kji + Ke
21

Kjj ← Kjj + Ke
22

fi ← fi + fe1
fj ← fj + fe2

next e
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The Boundary Condition Algorithm
Given the boundary conditions

D = {i |ŷi = di}
Make the modifications

for all i ∈ D
fi ← di
for all j /∈ D
fj ← fj − Kjidi

next j
Ki∗ ← 0
K∗i ← 0
Kii ← 1

next i
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The Final Computation
Since ŷD is given we only solve the reduced system

KFF ŷF = fF

where F ≡ {j|j /∈ D}.
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Let us go to 2D
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Lets do the fast track this time
• STEP 1: Define Elements
• STEP 2: Choose Test and Shape Functions
• STEP 3: Solve Element wise Integrals
• STEP 4: Do Assembly of Elements
• STEP 5: Apply Boundary Conditions
• STEP 6: Compute Solution
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The Problem
We wish to find the unknown function u(p) : R2 7→ R on some domain
p =

[
x y

]T ∈ Ω ∈ R2. All we know is some differential equation

∂2u(p)
∂x2

+
∂2u(p)
∂y2

= c(p)

where c(p) : R2 7→ R is some known function. Additionally, we are given some boundary
conditions

u(p) = a(p)

For all p ∈ Γ ≡ ∂Ω. Now we will do this using the finite element method (FEM).
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The 2D Domain
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The 2D Computational Mesh
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STEP 1: Define Elements
We have triangle elements

Element e consists of the nodes i , j, and k in counterclockwise order.
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STEP 2: Choose Test and Shape Functions
Let p(x , y) ∈ Ωe then we want to find the approximation

u(p) ≈ û(p) =
[
Ne

i (p)I2×2 Ne
j (p)I2×2 Ne

k (p)I2×2

] ûe
i

ûe
j

ûe
k

 = Ne ûe

and we choose test functions to be ve(p) = we(p) = Neδue . Observe that N changed
dimensions from 1D to 2D. This is why I2×2 terms pop up.

For a triangle, we will use barycentric coordinates also known as area-weighted coordinates.

Ne
i =

Ae
i

Ae , Ne
j =

Ae
j

Ae , and Ne
k =

Ae
k

Ae

Here A’s are triangle areas and Ae = Ae
i + Ae

j + Ae
k total area.
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Barycentric Coords ≡ Area Weighted Coords
Geometrically that looks like this
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The Local Shape Functions
We can use cross-products to quickly compute triangle areas

Ne
i =

(pk − pj)× (p− pj)

2Ae

Ne
j =

(pi − pk)× (p− pk)

2Ae

Ne
k =

(pj − pi)× (p− pi)

2Ae

where Ae = 1
2 (pj − pi)× (pk − pi). Observe these are linear functions in x and y .
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Remembering how the Cross-Product Works

• In 2D the cross-product gives a scalar.
Given a,b ∈ R2 then

a× b ≡ det

[
aT

bT

]
• In 3D the cross-product gives a vector.

Given a,b ∈ R3 then

a× b ≡ det

 î ĵ k̂
ax ay az
bx by bz


In 3D one needs to compute the length
of the vector to get to the area
measure.
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The Spatial Derivatives
So we find by differentiation of the cross-product definition that,

∂Ne
i

∂x = −
(pk − pj)y

2Ae

∂Ne
i

∂y =
(pk − pj)x

2Ae

The subscripts x and y refers to the component of the vectors (pk − pj) and (pk − pj).
We can derive similar expressions for Ne

j and Ne
k , we leave this for a home exercise. Observe

the computed derivatives above are constants independent of x and y .
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A Geometric Approach for The Spatial Derivatives
Let us try this differently, let us go back to the definition of the local shape function

Ne
i (p) ≡

Ae
i (p)

Ae

The gradient would then be

∇Ne
i ≡
∇Ae

i (p)

Ae

where p ≡ (x , y)T is some point inside the triangle.
Observation: we only need to understand what the gradient of the triangle area Ae

i means.
That is ∇Ae

i (p).

U n i v e r s i t y o f C o p e n h a g e n Introduction to FEM 20–04–2024 47



The gradient of a Triangle Area using Geometry
The gradient tells us two things
• What direction to move the corner point p of the triangle Ae

i in to make the area value
grow quickest
• Further, it tells us how large the growth will be if we move one unit in the direction of

the gradient.
Let us try to just ”draw” that up!
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The gradient of a Triangle Area using Geometry
Any green direction on the upper side of the dashed line will grow the blue area.

The green arrow that is orthogonal to the dashed line will grow the area quickest. The
change in area, when we take one unit step in that direction, gives us the magnitude of the
gradient. That is the grey area.
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The gradient of a Triangle Area using Geometry
To compute the area of the grey area we just imaginary push the p-vertex along the dashed
line to make a right triangle. This will not change the area of the blue or grey triangles.

From the drawing, we immediately see that the grey area is half of the length of i − k edge.
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The gradient of a Triangle Area using Geometry
Let us recap in math. The unit direction, d, that is orthogonal to the dashed line, we get
from hatting the vector going from pj to pk .

d ≡ −
p̂j − pk
‖ pj − pk ‖

To get the gradient we must multiply this direction with the value of the grey area,

∇Ne
i ≡

1

2
‖ pj − pk ‖ d

= −1

2
‖ pj − pk ‖

p̂j − pk
‖ pj − pk ‖

= −1

2
ˆpj − pk

Observe we used the hat operator to rotate a vector 90 degrees CCW.
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STEP 3: Solve the Element-wise Integrals
So we have ∫

Ωe
ve
(
∂2u
∂x2

+
∂2u
∂y2
− c
)

dΩ+

∫
Γe

we (u − a) dΓ = 0

Remember that by design the test functions v and w are defined such that v(p) is arbitrary
for all p ∈ Ω and zero elsewhere and w(p) is arbitrary for all p ∈ Γ and zero elsewhere.
That means v and w are complementary so we will ignore the boundary term for now and
concentrate on the governing term. That is,∫

Ωe
ve
(
∂2u
∂x2

+
∂2u
∂y2
− c
)

dΩ = 0
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Getting the Local Element Matrices
Substitution of our choices and integration by parts etc give us

Ke ûe = fe

where

Ke =

((
∂Ne

∂x

)T ∂Ne

∂x +

(
∂Ne

∂y

)T ∂Ne

∂y

)
Ae

fe = −
∫
Ωe
(Ne)T cdΩ

Now for our example we assume c = 0 and we will have closed form formulas.
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STEP 4: Do Assembly of Elements

Same as in 1D
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STEP 5: Apply Boundary Conditions

Same as in 1D
(If conditions are point wise)
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STEP 6: Compute Solution

Same as in 1D
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The Boundary Condition Term
So if boundary conditions are not pointwise we have to look at∫

Γe
we (u − a) dΓ = 0

Doing the same algebraic manipulations as before we end up with∫
Γe

(Ne)T (Ne ûe − a) dΓ = 0

Why is this different from the 1D example?
• The boundary condition is applied along the whole boundary

Observe that the equation will give a result like

ue = de
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Its Really Just Like Pointwise Conditions
Knowing that we end up with

ue = de

for the element boundary
• Compute boundary terms for all elements with a boundary
• Assemble all boundary terms into one boundary vector
• Apply the assembled boundary vector as point-wise boundary conditions to assembled

system.
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2D Elasticity

U n i v e r s i t y o f C o p e n h a g e n Introduction to FEM 20–04–2024 59



STEPS 1-2 and 4-6
We use the exact same setup as for the previous 2D example
• 2D domain
• Triangle elements
• Area weighted coordinates for shape functions
• Point-wise boundary conditions

Now all that is missing is the problem definition and how to phrase it as an element integral.
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The Problem and Element Integral
The weak form integral of Cauchy’s equation (the equivalent of Newton 2. Law for
continuum) results in ∫

Ωe
(δε)TσdΩ = (δue)T fe

where
• σ is the Cauchy stress tensor written as a 3-dimensional vector
• δε is the virtual Cauchy strain tensor written as a 3-dimensional vector
• δue is the virtual displacement vector of dimension 6
• fe is the external body force vector of dimension 6

As usual, we treat boundary conditions as point-wise and can ignore them for now. Observe
we have “cheated” with the right-hand-side and ignore a proper FEM derivation for the
sake of brevity.
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The Virtual Displacements
Given nodal virtual displacements δue we can use our shape functions

δu = Neδue

where N is a 2-by-6 dimensional matrix given by

Ne =
[
Ne

i I2×2 Ne
j I2×2 Ne

k I2×2

]
and the N’s are the barycentric coordinates introduced previously.
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The Virtual Strain
Strain, ε, is a function of the displacement field thus by definition

δε = Sδu = SNe︸︷︷︸
B

δue = Bδue

where S is the differential operator of dimension 3-by-2

S =

 ∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


and so B is of dimension 3-by-6
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Linear Elasticity
If one imposes the condition that σ is symmetric then the stress tensor can be saved in a
3-dimensional vector

σ =
[
σ11 σ22 σ12

]T
A similar trick can be used for a symmetric strain tensor

ε =
[
ε11 ε22 γ12

]T
The stress tensor may be related to the Cauchy strain tensor by the linear relation

σ = Dε = DBue

where D is a 3-by-3 elasticity matrix.
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Substitution of the Math
If we substitute into our element integrals we have∫

Ωe
(δue)TBTDBuedΩ = (δue)T fe

This must hold for all virtual displacements so∫
Ωe
BTDBuedΩ = fe

which we can solve
BTDBAe︸ ︷︷ ︸

Ke

ue = fe

That is it!
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A Few Implementation Tips
For aluminium Young modulus is E = 69 · 109 Pa and Poisson ratio is ν = 0.35 and the
Elasticity matrix would be given by

D =
E

(1− ν2)

1 ν 0
ν 1 0

0 0 (1−ν)
2


and

B =




∂Ne
i

∂x 0

0
∂Ne

i
∂y

∂Ne
i

∂y
∂Ne

i
∂x




∂Ne
j

∂x 0

0
∂Ne

j
∂y

∂Ne
j

∂y
∂Ne

j
∂x




∂Ne
k

∂x 0

0
∂Ne

k
∂y

∂Ne
k

∂y
∂Ne

k
∂x




For steel, one would have E = 210 · 109 Pa and ν = 0.29.
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Further Reading

• O. C. Zienkiewicz and R. L. Taylor: The Finite Element Method, volume 1, The Basis,
Fifth Edition, Butterworth and Heinemann, 2002
• R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt: Concepts and applications of

finite element analysis, fourth edition, John Wiley and Sons, 2002.
• Müller and M. Gross: Interactive virtual materials, Proceedings of Graphics Interface

2004.
• R. Schmedding and M. Teschner: Inversion Handling for Stable Deformable Modeling,

The Visual Computer, vol. 24, no. 7-9 (CGI 2008 Special Issue), pp. 625-633, 2008.
• A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk: A finite element method for

animating large viscoplastic flow, ACM Trans. Graph. vol 26. no. 3. 2007.
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Assignment

• Make an implementation of the 1D problem on page 4. Use the values

x1 = 1, xn = 2, a = 1, b = 2, c = 0

r =
n−1
√
2, xk = rk for 0 < k < n

Start by sketching on paper showing how you expect y(x) to look like.
• Discuss which parts of the algorithm are embarrassingly parallel. If you have time

consider rewriting the parts that have race conditions to become embarrassingly
parallel.
• Consider using an iterative method (like Conjugate Gradient) for solving the reduced

system, can you suggest any optimizations? (Hint: do not assemble the global matrix).
• Implement your pseudo-code algorithms for your optimizations.
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Assignment

• Prove the formula for the spatial cross products for all shape functions Ni , Nj and Nk
on Page 46 are correct by deriving the equations.
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Assignment

• Derive the formula for Ke and fe on Page 53 in full detail for the 2D example on Page
38.
• Implement the 2D example on a rectangular domain that is 6-by-2 in size.

• Set a = 1 on the left edge of the rectangle and a = 2 on the right size.
• Use c = 0
• Treat boundary conditions as point-wise conditions

• Discuss from a computer scientist’s viewpoint which steps are the same and which
steps are different compared to the 1D example.
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Assignment

• Make an implementation of the 2D elastic assembly process using the closed form
solution from Page 65 and 66.
• Discuss from a computer science viewpoint which steps are the same and which steps

are different in the 2D elastic case from the previous 1D and 2D Poisson problems.
• Speculate how to write a general FEM computer program that could simulate any

partial differential equation with point-wise boundary conditions.
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Assignment

• For the 2D elasticity problem,∫
Ωe
(δε)TσdΩ =

∫
Γe
(δu)T fdS

where f is a given constant load (force per meter) use the FEM method to derive the
Ke and fe terms such that

Keue = fe

• Based on your FEM derivation implement a rectangular solid 2D bar of dimension
6-by-2 meters and made of steel like material. Attach the left side of the bar to a wall
(use boundary condition u = 0) and apply a downward nodal load on the right edge of
the bar.
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Assignment

• Examine the eigenvalue spectrum of the global stiffness matrix of your implementation
from Page 72 before applying boundary conditions and after (Hint: write down how
many zero eigenvalues you expect before and after applying boundary conditions and
explain how the minimum eigenvalue is related to the boundary conditions after having
applied these).
• Examine the fill pattern of the stiffness matrix (Hint: reflect on the shape of the fill-in

and how the non-zero values in K are related to the mesh).
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Assignment
Use your implementation from Page 72.
• Investigate what happens to the deformations when you vary the resolution and load

on the bar. Try to find the best suitable mesh resolution. (Hint: it is critical that you
have the right formula for fe and do not use a “constant” load per node value, can you
explain why?)
• From everyday life steel material appears to be noticeably incompressible. Examine

whether your implementation has a volume (area in 2D) conservation (Hint: Explain
the causes for your observations, and consider carefully what could have “gone”
wrong).
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