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An Elastic Solid

e Reference frame called the material coordinates X.

® Deformed into spatial coordinates x by the spatial-temporal deformation x = ®(X, t).
Material coordinates are the spatial coordinates at time t = 0. That is X = ®(X,0).

® The material volume is V' and the spatial volume is v
® The material /spatial boundaries are 9V and dv
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The Physical Model — Governing Equations (1/2
The Cauchy equation at some spatial point x
px =V -0+ b,

where b is body force density, p is spatial mass density, and o is the Cauchy stress tensor
as defined by Cauchy’s stress hypothesis

t=on,

where n is an unit normal vector of a plane and t is the corresponding traction.
Conservation of angular momentum implies
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The Physical Model — Governing Equations (2/2)
We write a model of our problem as
px=V.-o+b, Vx € v,
t=on, Vx € Ovs.

Here vy C Ov is the subset of the boundary where a known non-zero surface traction is
applied.
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The Weak Form Reformulation
We multiply with an admissible test function w and integrate over the material volume V
/ (px—V-o—b) wdV =0
v

which we split into terms

Oz/pj'(-de—/(V~0')-de—/b~de.
14 14 14

The next step involves the tensor equivalent of the product rule for the term
V-(ow)=(V-0) - w+o:Vw' and the fact that o is symmetric,

0:/pjl('WdV—i-/O'ZVWC/V—/V‘(O'W)O'V—/b‘WdV,
% v v %
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The Weak Form Reformulation

Next, we apply the Gauss divergence theorem to rewrite the volume integral of V - (ow)

and use t = on,

/VV~(0'W)dV:/ (ow) - ndS,

oV

w - (on)dS,
v

t- wds,

t- wdsS.
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In the final step, we have applied our boundary condition on =t on 0V; so t =0

everywhere else.

6
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The Weak Form Reformulation

We introduce the symbols

P, :/ px - wdV,
4

Pe:/ o:VwdV,
v

Pt__/ thS,
oV

Pb:—/b-wdv.
v

0=P,+ Pe+ P+ Pp.

We now have

For now. we will consider free-floatine obiects so P, = 0.
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The Body Power Term

We use viscous damping as our body forces

Pb:—/—cx‘de:/ck‘de
v v

where ¢ > 0 is a viscous damping coefficient.
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The Elastic Power Term (1/2)

The virtual elastic power term is given as
P. = / o:VwdV.
1%
Since the Cauchy stress tensor is symmetric we have

Pe:/a':
14

(Vw+Vw')dV.

DN | =
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The Elastic Power Term (2/2)

Recall the infinitesimal strain tensor is by definition

1

e=-(Vu+vu'),

O |

so we define )
ew =15 (Vw+Vw’).

That means using the virtual infinitesimal stress tensor we have

Pe :/ o:e,dV.
v

20-04-2024
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The Constitutive Equation

The stress-strain relation comes form o = %—i’ where W is the strain energy function per
unit initial volume. It is defined as

1
€= 5(Vu+ Vu'),

where u = x — X is the displacement field. In the case of isotropic linear elastic
(compressible Neo—Hookean) solids the strain energy function is given as

A
U= §tr(r—:)2 + pe : €,

where X\ and p are the Lamé constants. Thus, the stress-strain relation has the form

o = Mr(e)l+2pue.
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The Constitutive Equation — In Matrix Notation (1/4)

Writing out each component of the Cauchy stress tensor yields

Oxx = A (Exx + Eyy + E22) + 2HExx,
Oyy = A + Eyy +E27) + 21y,
022 = A (Exx + Eyy + E22) + 21E 2z,
Oxy = 2HExy,
Oxz = 2/iExz,

Oyz = 2UUEyz.

12
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The Constitutive Equation — In Matrix Notation (2/4)

This can be written in matrix form by defining the vectors

T

g = [UXX Oyy Ozz Oxy Oxz Uyz]
and

-

s:[exx Eyy €zz 26xy 2Ex 25yz]
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The Constitutive Equation — In Matrix Notation (3/4)

then - ) o ;
O sx A+ 2u A A 0 0 O Exx
Oyy A A+ 2p A 0 0 0 Eyy
Ozz| A A A4+2u 0 0 O €12
Oxy | 0 0 0 w0 0 (264
Oxz 0 0 0 0 u 0| |2k
[0z | 0 0 0 0 0 pul [26e),]

In terms of Youngs moduls E and Poisson ratio v the Lamé constants are

Ev
1+ v)(1—2v)
E
2(1+v)

A=

M:

14



.? University of Copenhagen The Weak form for Linear Elastic Materials  20-04-2024 15

The Constitutive Equation — In Matrix Notation (4/4)

Using all these relations we get the final form of the constitutive equation that we will use,

o = De
where ) }
d) d d 0 0 0
d dy d4 0 0 0
D E d d d 0 0 0
(I+v)(1—-2v) [0 0 0 do 0 O
0 0 0 0 d 0
|0 0 0 0 0 dof

and dy = (1 —v), di =v, and d2:(1;221/).
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The Finite Element Discretization

Changing from tensor notation to matrix (Voigt) notation our weak form integral reads

Pe:/ a-sWdV:/ el DedV.
14 14

Our mathematical model can be stated as
0=P,+ Pe+ Pp.

Our final versions are,

P :/px-wdv, Pe:/eVTVDedv, P,,:/ cx - wdV.
14 14 14

Now we can discretize our model using our shape functions.

16
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The Shape Functions

A volume integral over the solid can be written as a sum of element-wise volume integrals

/V<...>dvzg/e<...>dv.

We use this without loss of generality to simplify our equations by only considering one
tetrahedral element in our derivations.
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The Shape Functions

We have a point X inside a tetrahedron e with nodal labels i, j, k, and m using linear
shape functions

X = NiX;+ N;X; + N Xy + N X,
u = Niu; + Njuj + Neuy + Npupy,

where the N,'s for a € e = {/, j, k, m} are the barycentric/volume coordinates of the point
X with respect to the et" tetrahedron.
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The Shape Functions

The interpolation weights are equivalent to the local hat functions and easily computed
from the geometry

ijm

Ve

_ (X = X)) - (Xke = Xj) X (Xim = X))
(Xm — Xi) - ((Xj — Xi) x (X — X))

N; =

where V€ is material volume and Vi is the volume of the tetrahedron spanned by X and
nodes j, k, and m.
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The Shape Functions

The material gradients are easily computed

(X — Xj) x (Xm — Xk)
6Ve ’

VoN; =

Where Vg ix = [8)( Jy (92] T is the material gradient operator whereas

T. . .
[ Z] is the spatial gradient operator.

HI
Q;‘Q)
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The Problem and Solution

Reexamining our model equation we observe that the spatial gradients are used but
integrals are taken over material coordinates. Our assumption of infinitesimal displacements

means x =~ X, || Vu ||[< 1 and so it follows Vou ~ Vu. This means that we can think of
all spatial gradients as material gradients.
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The Matrix Notation of Shape Functions

For the displacement field, we have

u;
u; -
u~ E Nyu, = N¢ | 27 | = Nea®.
(ikom} ug
acl,j,k,m ~
J i

Similar for w =~ N°w*® the spatial positions x ~ N¢x°. Where

S O =
O = O
_ o O

Ne =[N NI N NJ] and |=

22
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The Matrix Notation of Shape Functions

Recall that the strain tensor was defined as € = %(Vou + Vou') so

similar for the test strain €}, =~ B°w*.

[Ox 0 0]
0 Jy O
0 0 07
dy Ox O
0 0 Ox
L0 0z Oy}
s

e~

e

Nea® = SN° i = BCur,
BE

23
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The Matrix Notation of Shape Functions

Writing out we have
B¢ = [B,e B; Bj Bfn]

where
[Ox N; 0 0 7
0 Oy N; 0
0 0 dzN;
Oy N; 0OxN; 0
azN,' 0 axN;
| 0 dzN; OyN;]

Similar for Bf, B}, and By,
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Applying the Shape Functions to the Power Terms

Applying all approximations we have

Py = (w°)" < /V e p(NEWN“"dV) x°,
Pe= (w7 ( /V e(BGWDBédV) ",
Py = ()" < /V e c(Ne>TNedV> x°,
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Simplifying
The equation P, + P. + Pp = 0 must hold for arbitrary values of w® so we end up with
M°x° + C°x° + K°u® = 0,
where
Me = /ep(Ne)TNedV,
ce= /ec(Ne)TNedV,
Ke = / (B*)"DB¢dV.

For computational efficiency, one may apply lumping for the mass and damping matrices.
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Assembly Process

Summing up over all tetrahedra, the assembly process, we have the global system
Mx + Cx + Kii = 0.

If we had included gravity in the body forces or similar then we may add an extra f term to
the right-hand side to account for this constant body force term.
Observe

® The infinitesimal assumption allowed us to interchange spatial gradients with material
gradients

® The consequence is that the K matrix is a constant matrix and can be precomputed
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Time Discretization

The finite element method resulted in the 2nd order differential equation
Mx + Cx + Ku = f.

We have dropped the tilde notation. The time derivative of the velocity is the acceleration,
v = X, and so using first-order Euler,

yttat ot

v
At

VRS

and
xEHAL oyt L A gy tTAL
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Time Discretization

Substituting the finite difference approximations we have
yitAr _ ot
M——— + K (x*™f — X) + Cv'*! = F.
At

Further manipulation

MyITAE — Myt + AtK (xt+ AtviT2E — X) + AtCvt™ = Atf.
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Time Discretization

Finally oA
Av =b

)

where

A= M+ AtC + At’K,
b=Mvt+ At (F— Kx!+ fo) .

Here fo = KX. A'is a sparse block symmetric and positive definite. Having found vtt4t
we may do the position update

Xt+At — xt + AthAt.
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The Corotational Formulation

Problem
® |f we drop infinitesimal assumptions K is a non-linear function of x. The elastic force
term is K€(x¢)u®.
We seek an approximation of the term K¢(x€)u®

® |dea: large deformations are due to the current spatial rotation.



.‘? University of Copenhagen

The Corotational Formulation

Thus, we write

The Weak form for Linear Elastic Materials

Ke(xe>ue ~ O°¢K¢® ((OE)TXe . Xe) ’

where OF€ is the block rotation matrix

RE 0 0
e |0 R 0
=10 o re
0 0 0

Re

20-04-2024

and R°€ is the rotation matrix from the material coordinates to spatial coordinates.

32
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The Rotation Matrix

In the least square error sense, the rotation matrix could be understood as the problem

R® = argmin > llxa—RXa|P
a:{i7j7k7m}
subject to the constraint
R"R=1

Rather than solving this constrained minimization problem one may exploit the polar
decomposition of the deformation gradient. We will omit the element superscript for
readability.



.‘? University of Copenhagen The Weak form for Linear Elastic Materials  20-04-2024

The Deformation Gradient

We define the edge vectors

€,p = X3 — Xp,
E,, = X, — Xp,

for all a# b and a, b € {i,j, k, m}. By definition of the deformation gradient

€. = FE 3.

34
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The Deformation Gradient

We form the linear system

leji ew emi|=F|[Eji Ex Epi.

E Eo

The deformation gradient is then easily computed as
—1
F=EE;".

This is efficient as Eal is in material coordinates.
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The Polar Decomposition
There exists a polar decomposition of the deformation gradient
F=RU,

where R is an orthogonal matrix and U is a symmetric stretch matrix. From the right
Cauchy—Green strain tensor we have

C=F'F=U~.
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The Polar Decomposition

Eigenvalue decomposition of C gives the diagonal matrix A of eigenvalues and €2 the
orthogonal matrix of eigenvectors
C=0A0"

SO
U=QVAQ".

Finally we can compute R as

R=FU'= F( A—l) Q.
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The Co-rotational Final Warp

Before performing the velocity update by solving Avit2t = b one must compute R for
each tetrahedron according to the above equation and then update each local stiffness
element leading to

Ke’ _ OeKe(oe)T’
f§ = O°KeXe.
The primed quantities are now used in place of the unprimed quantities in the assembly

before computing the velocity update. Observe that a new assembly process must be done
as the first thing in each iteration of the simulation loop.



