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An Elastic Solid
• Reference frame called the material coordinates X .
• Deformed into spatial coordinates x by the spatial-temporal deformation x = Φ(X , t).

Material coordinates are the spatial coordinates at time t = 0. That is X = Φ(X , 0).
• The material volume is V and the spatial volume is v
• The material/spatial boundaries are ∂V and ∂v
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The Physical Model – Governing Equations (1/2

The Cauchy equation at some spatial point x

ρẍ = ∇ · σ + b,

where b is body force density, ρ is spatial mass density, and σ is the Cauchy stress tensor
as defined by Cauchy’s stress hypothesis

t = σn,

where n is an unit normal vector of a plane and t is the corresponding traction.
Conservation of angular momentum implies

σT = σ.
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The Physical Model – Governing Equations (2/2)

We write a model of our problem as

ρẍ = ∇ · σ + b, ∀x ∈ v ,
t = σn, ∀x ∈ ∂vt .

Here ∂vt ⊆ ∂v is the subset of the boundary where a known non-zero surface traction is
applied.
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The Weak Form Reformulation
We multiply with an admissible test function w and integrate over the material volume V∫

V
(ρẍ −∇ · σ − b) · wdV = 0

which we split into terms

0 =

∫
V
ρẍ · wdV −

∫
V
(∇ · σ) · wdV −

∫
V

b · wdV .

The next step involves the tensor equivalent of the product rule for the term
∇ · (σw) = (∇ · σ) · w + σ : ∇wT and the fact that σ is symmetric,

0 =

∫
V
ρẍ · wdV +

∫
V
σ : ∇wdV −

∫
V
∇ · (σw)dV −

∫
V

b · wdV ,
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The Weak Form Reformulation
Next, we apply the Gauss divergence theorem to rewrite the volume integral of ∇ · (σw)
and use t = σn, ∫

V
∇ · (σw)dV =

∫
∂V

(σw) · ndS,

=

∫
∂V

w · (σn)dS,

=

∫
∂V

t · wdS,

=

∫
∂Vt

t · wdS.

In the final step, we have applied our boundary condition σn = t on ∂Vt so t = 0
everywhere else.
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The Weak Form Reformulation
We introduce the symbols

Pρ =

∫
V
ρẍ · wdV ,

Pe =

∫
V
σ : ∇wdV ,

Pt = −
∫
∂Vt

t · wdS,

Pb = −
∫

V
b · wdV .

We now have
0 = Pρ + Pe + Pt + Pb .

For now, we will consider free-floating objects so Pt = 0.
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The Body Power Term
We use viscous damping as our body forces

Pb = −
∫

V
−c ẋ · wdV =

∫
V

cẋ · wdV

where c > 0 is a viscous damping coefficient.
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The Elastic Power Term (1/2)

The virtual elastic power term is given as

Pe =

∫
V
σ : ∇wdV .

Since the Cauchy stress tensor is symmetric we have

Pe =

∫
V
σ :

1

2

(
∇w +∇wT ) dV .
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The Elastic Power Term (2/2)

Recall the infinitesimal strain tensor is by definition

ε =
1

2

(
∇u +∇uT ) ,

so we define
εw =

1

2

(
∇w +∇wT ) .

That means using the virtual infinitesimal stress tensor we have

Pe =

∫
V
σ : εwdV .
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The Constitutive Equation
The stress-strain relation comes form σ = ∂Ψ

∂ε where Ψ is the strain energy function per
unit initial volume. It is defined as

ε =
1

2
(∇u +∇uT ),

where u = x − X is the displacement field. In the case of isotropic linear elastic
(compressible Neo–Hookean) solids the strain energy function is given as

Ψ =
λ

2
tr (ε)2 + µε : ε,

where λ and µ are the Lamé constants. Thus, the stress-strain relation has the form

σ = λtr (ε) I + 2µε.
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The Constitutive Equation – In Matrix Notation (1/4)

Writing out each component of the Cauchy stress tensor yields

σxx = λ (εxx + εyy + εzz) + 2µεxx ,

σyy = λ (εxx + εyy + εzz) + 2µεyy ,

σzz = λ (εxx + εyy + εzz) + 2µεzz ,

σxy = 2µεxy ,

σxz = 2µεxz ,

σyz = 2µεyz .

U n i v e r s i t y o f C o p e n h a g e n The Weak form for Linear Elastic Materials 20–04–2024 12U n i v e r s i t y o f C o p e n h a g e n The Weak form for Linear Elastic Materials 20–04–2024 12



The Constitutive Equation – In Matrix Notation (2/4)

This can be written in matrix form by defining the vectors

σ =
[
σxx σyy σzz σxy σxz σyz

]T

and
ε =

[
εxx εyy εzz 2εxy 2εxz 2εyz

]T
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The Constitutive Equation – In Matrix Notation (3/4)

then 

σxx
σyy
σzz
σxy
σxz
σyz

 =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





εxx
εyy
εzz
2εxy
2εxz
2εyz

 .

In terms of Youngs moduls E and Poisson ratio ν the Lamé constants are

λ =
Eν

(1 + ν)(1− 2ν)
,

µ =
E

2(1 + ν)
.
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The Constitutive Equation – In Matrix Notation (4/4)

Using all these relations we get the final form of the constitutive equation that we will use,

σ = Dε

where

D =
E

(1 + ν)(1− 2ν)



d0 d1 d1 0 0 0
d1 d0 d1 0 0 0
d1 d1 d0 0 0 0
0 0 0 d2 0 0
0 0 0 0 d2 0
0 0 0 0 0 d2


and d0 = (1− ν), d1 = ν, and d2 = (1−2ν)

2 .
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The Finite Element Discretization
Changing from tensor notation to matrix (Voigt) notation our weak form integral reads

Pe =

∫
V
σ · εwdV =

∫
V
εT

w DεdV .

Our mathematical model can be stated as

0 = Pρ + Pe + Pb .

Our final versions are,

Pρ =

∫
V
ρẍ · wdV , Pe =

∫
V
εT

w DεdV , Pb =

∫
V

c ẋ · wdV .

Now we can discretize our model using our shape functions.
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The Shape Functions
A volume integral over the solid can be written as a sum of element-wise volume integrals∫

V
(. . .)dV =

∑
e

∫
V e

(. . .)dV .

We use this without loss of generality to simplify our equations by only considering one
tetrahedral element in our derivations.
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The Shape Functions
We have a point X inside a tetrahedron e with nodal labels i , j, k, and m using linear
shape functions

X = NiX i + NjX j + NkXk + NmXm,

u = Niui + Njuj + Nkuk + Nmum,

where the Na’s for a ∈ e ≡ {i , j, k,m} are the barycentric/volume coordinates of the point
X with respect to the eth tetrahedron.
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The Shape Functions
The interpolation weights are equivalent to the local hat functions and easily computed
from the geometry

Ni =
Vjkm
V e

=
(X − X j) · ((Xk − X j)× (Xm − Xk))

(Xm − X i) · ((X j − X i)× (Xk − X i))

where V e is material volume and Vjkm is the volume of the tetrahedron spanned by X and
nodes j, k, and m.
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The Shape Functions
The material gradients are easily computed

∇0Ni =
(Xk − X j)× (Xm − Xk)

6V e ,

Where ∇0 ≡ ∂
∂X =

[
∂X ∂Y ∂Z

]T is the material gradient operator whereas
∇ ≡ ∂

∂x =
[
∂x ∂y ∂z

]T is the spatial gradient operator.
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The Problem and Solution
Reexamining our model equation we observe that the spatial gradients are used but
integrals are taken over material coordinates. Our assumption of infinitesimal displacements
means x ≈ X , ‖ ∇u ‖� 1 and so it follows ∇0u ≈ ∇u. This means that we can think of
all spatial gradients as material gradients.
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The Matrix Notation of Shape Functions
For the displacement field, we have

u ≈
∑

a∈{i,j,k,m}

Naua = Ne


ũi
ũj
ũk
ũm

 = Ne ũe .

Similar for w ≈ New̃e the spatial positions x ≈ Ne x̃e . Where

Ne =
[
Ni I Nj I NkI Nl I

]
and I =

1 0 0
0 1 0
0 0 1

 .
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The Matrix Notation of Shape Functions
Recall that the strain tensor was defined as ε = 1

2(∇0u +∇0uT ) so

ε ≈



∂X 0 0
0 ∂Y 0
0 0 ∂Z
∂Y ∂X 0
∂Z 0 ∂X
0 ∂Z ∂Y


︸ ︷︷ ︸

S

Ne ũe = SNe︸︷︷︸
Be

ũe = Be ũe ,

similar for the test strain εe
w ≈ Bew̃e .
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The Matrix Notation of Shape Functions
Writing out we have

Be =
[
Be

i Be
j Be

k Be
m
]

where

Be
i =



∂X Ni 0 0
0 ∂Y Ni 0
0 0 ∂Z Ni

∂Y Ni ∂X Ni 0
∂Z Ni 0 ∂X Ni
0 ∂Z Ni ∂Y Ni

 .

Similar for Be
j , Be

k , and Be
m.
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Applying the Shape Functions to the Power Terms
Applying all approximations we have

Pρ = (w̃e)T
(∫

V e
ρ(Ne)T NedV

)
¨̃xe ,

Pe = (w̃e)T
(∫

V e
(Be)T DBedV

)
ũe ,

Pb = (w̃e)T
(∫

V e
c(Ne)T NedV

)
˙̃xe ,
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Simplifying
The equation Pρ + Pe + Pb = 0 must hold for arbitrary values of w̃e so we end up with

Me ¨̃xe + Ce ˙̃xe + Ke ũe = 0,

where

Me =

∫
V e

ρ(Ne)T NedV ,

Ce =

∫
V e

c(Ne)T NedV ,

Ke =

∫
V e

(Be)T DBedV .

For computational efficiency, one may apply lumping for the mass and damping matrices.
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Assembly Process
Summing up over all tetrahedra, the assembly process, we have the global system

M ¨̃x + C ˙̃x + Kũ = 0.

If we had included gravity in the body forces or similar then we may add an extra f term to
the right-hand side to account for this constant body force term.
Observe
• The infinitesimal assumption allowed us to interchange spatial gradients with material

gradients
• The consequence is that the K matrix is a constant matrix and can be precomputed
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Time Discretization
The finite element method resulted in the 2nd order differential equation

Mẍ + Cẋ + Ku = f .

We have dropped the tilde notation. The time derivative of the velocity is the acceleration,
v̇ = ẍ, and so using first-order Euler,

v̇ ≈ v t+∆t − v t

∆t ,

and
xt+∆t ≈ xt +∆tv t+∆t .
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Time Discretization
Substituting the finite difference approximations we have

M v t+∆t − v t

∆t + K
(
xt+∆t − X

)
+ Cv t+1 = f .

Further manipulation

Mv t+∆t − Mv t +∆tK
(
xt +∆tv t+∆t − X

)
+∆tCv t+1 = ∆tf .
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Time Discretization
Finally

Av t+∆t = b,

where

A = M +∆tC +∆t2K ,

b = Mv t +∆t
(
f − Kxt + f 0

)
.

Here f 0 = KX . A is a sparse block symmetric and positive definite. Having found v t+∆t

we may do the position update

xt+∆t = xt +∆tv t+∆t .
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The Corotational Formulation
Problem
• If we drop infinitesimal assumptions K is a non-linear function of x. The elastic force

term is Ke(xe)ue .
We seek an approximation of the term Ke(xe)ue

• Idea: large deformations are due to the current spatial rotation.
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The Corotational Formulation
Thus, we write

Ke(xe)ue ≈ OeKe ((Oe)T xe − Xe) ,
where Oe is the block rotation matrix

Oe =


R e 0 0 0
0 R e 0 0
0 0 R e 0
0 0 0 R e


and R e is the rotation matrix from the material coordinates to spatial coordinates.
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The Rotation Matrix
In the least square error sense, the rotation matrix could be understood as the problem

R e = argmin
R

∑
a={i,j,k,m}

‖ xa − RXa ‖2

subject to the constraint
RT R = I.

Rather than solving this constrained minimization problem one may exploit the polar
decomposition of the deformation gradient. We will omit the element superscript for
readability.
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The Deformation Gradient
We define the edge vectors

eab = xa − xb ,

Eab = Xa − Xb ,

for all a 6= b and a, b ∈ {i , j, k,m}. By definition of the deformation gradient

eab = FEab .
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The Deformation Gradient
We form the linear system[

e ji eki emi
]︸ ︷︷ ︸

E

= F
[
E ji Eki Emi

]︸ ︷︷ ︸
E0

.

The deformation gradient is then easily computed as

F = EE−1
0 .

This is efficient as E−1
0 is in material coordinates.
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The Polar Decomposition
There exists a polar decomposition of the deformation gradient

F = RU,

where R is an orthogonal matrix and U is a symmetric stretch matrix. From the right
Cauchy–Green strain tensor we have

C = FT F = U2.
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The Polar Decomposition
Eigenvalue decomposition of C gives the diagonal matrix Λ of eigenvalues and Ω the
orthogonal matrix of eigenvectors

C = ΩΛΩT

so
U = Ω

√
ΛΩT .

Finally we can compute R as

R = FU−1 = F
(√

Λ−1
)
ΩT .
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The Co-rotational Final Warp
Before performing the velocity update by solving Av t+∆t = b one must compute R e for
each tetrahedron according to the above equation and then update each local stiffness
element leading to

Ke′ = OeKe(Oe)T ,

f e′
0 = OeKeXe .

The primed quantities are now used in place of the unprimed quantities in the assembly
before computing the velocity update. Observe that a new assembly process must be done
as the first thing in each iteration of the simulation loop.
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