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Modeling of Elastic Solids

The partial differential equation, Cauchy
Equation, gives the equation of motion of an
elastic solid

ρẍ = b +∇ · σ

The boundary conditions of the Cauchy
stress tensor σ are given by

σn = t

where t is a known applied surface traction.
Finally, a constitutive law is needed that
provides a relationship between stress and
strain

S =
∂Ψ

∂E

where S is 2. Piola–Kirchhoff stress tensor
and E is the Green strain tensor. Now we
will derive all these equations that we need.
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Kinematics – Learning
The Definitions of The

Strain Tensors
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The Material and Spatial Coordinates
We have two sets of coordinates

• Let X be undeformed coordinates
• and x the deformed coordinates

The deformation is given by the mapping from undeformed coordinates into deformed
coordinates,

x = Φ(X , t)

Observe
• The same global reference coordinate system is used for both sets of coordinates.
• Undeformed coordinates are sometimes also called material coordinates and deformed

coordinates are the spatial coordinates.
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The Deformation Gradient
By definition of differentials we have

dx =
∂Φ

∂X︸︷︷︸
F

dX

The partial derivative ∂Φ
∂X = F is referred to as the Deformation gradient.

In particular, we have
Fij =

∂Φi
∂X j

=
∂x i
∂X j
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Investigating Local Deformation Measures
Think of dX1 and dX2 as arbitary chosen small “needles”. By definition we have

dx1 = FdX1

dx2 = FdX2

To describe any local deformation we investigate the dot products

dx1 · dx2 and dX1 · dX2

as these hold information about any local angle or length deformations.
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The Right Cauchy–Green Deformation Tensor
First we will try to express dx1 · dx2 in terms of material coordinates,

dx1 · dx2 = dxT
1 dx2

= (FdX1)
T (FdX2)

= dXT
1

(
FTF

)︸ ︷︷ ︸
C

dX2

where
C = FTF

is called the right Cauchy–Green Deformation tensor.
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Tensor Invariants (1/2)

The eigenvalues of C are independent of rotation thus the coefficients of the characteristic
polynomial are invariants

det (C− Iλ) = −λ3 + ICλ2 − II∗Cλ+ IIIC = 0

where

IC = tr (C) = C : I

II∗C =
1

2

(
tr (C)2 − tr

(
C2
))

IIIC = det (C)
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Tensor Invariants (2/2)

We prefer an alternative definition of the second invariant

IIC = tr
(
C2
)
= C : C

as it simplifies later equations
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The Eigenvalue Decomposition
Since C is a symmetric positive definite we know that an eigenvalue decomposition exists

CN− N = 0

where

N =
[
N1 N2 N3

]
=

λ2
1 0 0
0 λ2

2 0
0 0 λ2

3


and NTN = NNT = I and 0 < λ2

3 ≤ λ2
2 ≤ λ2

1 ∈ R. This can be rewritten as

C = NNT =
∑

i
λ2

i
(
N iNT

i
)
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Invariants in terms of Eigenvalues
Observe that knowing the eigenvalues λ2

i of C we can compute the tensor invariants as

IC = λ2
1 + λ2

2 + λ2
3

IIC = λ4
1 + λ4

2 + λ4
3

IIIC = λ2
1λ

2
2λ

2
3

These formulas will become handy when we later wish to change coordinates.
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A Rotation Tensor
The square root of C is

C =
√
C
√
C = UU

with
U =

∑
i

λi
(
N iNT

i
)

Let us define the tensor R as
R = FU−1

We can then prove that R is a rotation tensor

RTR = U−TFTFU−1 = U−TCU−1 = U−TUUU−1 = I
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The Polar Decomposition of Deformation Gradient
The new rotation tensor R implies that F can be decomposed as

F = RU

The implication is
dx = FdX = R (UdX)

where (UdX) is a stretch along the eigenvectors and R is a rotation of the stretched vector.

Therefore
• U is called the stretch tensor
• R is called the rotation tensor
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The Left Cauchy–Green Deformation Tensor
Next we will rewrite dX1 · dX2 in terms of spatial coordinates,

dX1 · dX2 = dXT
1 dX2

=
(
F−1dx1

)T (
F−1dx2

)
= dxT

1

FFT︸︷︷︸
B

−1

dx2

where
B = FFT

is called the left Cauchy–Green Deformation tensor.
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The Lagrange–Green Strain Tensor
We look at the deformation change. The difference between spatial and material dot
products expressed in material coordinates,

1

2
(dx1 · dx2 − dX1 · dX2) =

1

2

(
dxT

1 dx2 − dXT
1 dX2

)
=

1

2

(
(FdX1)

T (FdX2)− dXT
1 dX2

)
= dXT

1

1

2

(
FTF− I

)
︸ ︷︷ ︸

E

dX2

where
E =

1

2

(
FTF− I

)
=

1

2
(C− I)

is called the Green Strain tensor.
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The Euler–Almansi Strain Tensor
We describe the deformation change in terms of spatial coordinates,

1

2
(dx1 · dx2 − dX1 · dX2) =

1

2

(
dxT

1 dx2 − dXT
1 dX2

)
=

1

2

(
dxT

1 dx2 −
(
F−1dx1

)T (
F−1dx2

))
= dxT

1

1

2

(
I−
(
FFT )−1

)
︸ ︷︷ ︸

e

dx2

where
e =

1

2

(
I−
(
FFT )−1

)
=

1

2

(
I− B−1

)
is called the Euler Strain tensor.
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Spatial to Material Tensor Conversions
Observe that

e = F−TEF−1

E = FTeF

These are general tensor conversion formulas.
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The Displacement Field
Let us define the displacement field as follows

u = x − X

Then we trivially have
x = u + X

and
F =

∂(u + X)

∂X =
∂u
∂X + I

or
∂u
∂X = F− I
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Putting Displacement Field into Play
Let us use F = ∂u

∂X + I in the definition of the Green Strain Tensor

E =
1

2

((
∂u
∂X + I

)T ( ∂u
∂X + I

)
− I

)

=
1

2

((
∂u
∂X

T ∂u
∂X

)
+

(
IT

∂u
∂X

)
+

(
∂u
∂X

T
I

)
+
(
IT I
)
− I

)

=
1

2

(
∂u
∂X

T ∂u
∂X +

∂u
∂X +

∂u
∂X

T
)
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Assuming Small Displacement Gradients
If ‖ ∂u

∂X ‖� 1 then ∂u
∂X

T ∂u
∂X ≈ 0 and we have

E ≈ ε0 =
1

2

(
∂u
∂X

T
+

∂u
∂X

)

This strain tensor is called the Cauchy Strain tensor. If we used e instead of E we would
have found

e ≈ ε =
1

2

(
∂u
∂x

T
+

∂u
∂x

)
However, for small displacement gradients x ≈ X , ∂u

∂x ≈ ∂u
∂X , and so ε0 ≈ ε.
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The Strain Tensors
Green Strain Tensor

E =
1

2

(
∂u
∂X

T ∂u
∂X +

∂u
∂X +

∂u
∂X

T
)

Cauchy Strain Tensor

ε ≈ ε0 =
1

2

(
∂u
∂X

T
+

∂u
∂X

)
Observe that using ∂u

∂X = F− I we have

ε0 =
1

2

(
FT + F

)
− I
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The Velocity
Since x = Φ(X , t) then the spatial velocity of a material point is

v(X , t) ≡ ẋ(X , t) = ∂x(X , t)
∂t =

∂Φ(X , t)
∂t

or given in terms of spatial coordinates

v(x, t) = v
(
Φ−1 (x, t) , t

)
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The Velocity Gradient
The velocity gradient wrt. spatial coordinates is then

V ≡ ∂v(x, t)
∂x

Observe (Notice ∂X
∂t = 0)

Ḟ =
d
dt

(
∂Φ

∂X

)
=

∂

∂X

(
∂Φ

∂t

)
=

∂

∂X v =
∂v
∂x

∂Φ

∂X = VF

Resulting in
V = ḞF−1
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The Rate of Deformation
Taking the derivative

d
dt (dx1 · dx2) = dXT

1 ĊdX2 = 2dXT
1 ĖdX2

because E = 1
2(C− I). The material strain rate tensor is

Ė =
1

2
Ċ =

1

2

(
ḞTF+ FT Ḟ

)
Using dX = F−1dx we have

1

2

d
dt (dx1 · dx2) = dxT

1 F
−T ĖF−1︸ ︷︷ ︸

D

dx2

where D is the rate of deformation tensor.
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Coordinate Conversion of Rate Tensors
Observe that similar to the Euler–Almansi and Lagrange–Green strain tensors we have

D = F−T ĖF−1

Ė = FTDF

From this, we also find that

D = F−T ĖF−1

= F−T 1

2

(
ḞTF+ FT Ḟ

)
F−1

=
1

2

(
V+ VT )

because V = ḞF−1. Thus D is the symmetric part of the velocity gradient.
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Dynamics – Learning
The Definitions of The

Stress Tensors and
Power
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A Spatial Surface Element
The spatial surface element ds can be written as

ds =

ds1
ds2
ds3


where ds i is the projection of the area of surface ds onto the ith coordinate axis.

Observe that the surface normal is given by

n =
ds

‖ ds ‖
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Cauchy’s Stress Hypothesis
Definition: Stress is force per unit area. If we apply the force df to the surface element ds

df 1 = σ11ds1 + σ12ds3 + σ13ds3
df 2 = σ21ds1 + σ22ds3 + σ23ds3
df 3 = σ31ds1 + σ32ds3 + σ33ds3

where σij depends on position and time, collecting them

σ =
[
σij
]

we have
df = σds

where σ is the Cauchy Stress Tensor.
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The First Piola–Kirchhoff Stress Tensor
By definition the Cauchy stress tensor

df = σds

The first Piola–Kirchhoff stess tensor is defined as

df = PdS

So we must have
σds = df = PdS

Using Nanson’s Relation
σjF−T dS = df = PdS

From this we have the relation between the Cauchy stress tensor and the first
Piola–Kirchhoff stress tensor

P = jσF−T
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The Second Piola–Kirchhoff Stress Tensor
By definition the Cauchy stress tensor

df = σds

The second Piola–Kirchhoff stess tensor is defined as

dF = SdS

However df = FdF so we must have

σds = df = FdF = FSdS
σds = FSdS

jF−1σF−T dS = SdS

So
S = jF−1σF−T
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The Traction Force
We have

df = σds

If we divide by surface area we will have traction t = df / ‖ ds ‖

t = σn

where t1
t2
t3

 =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

n1

n2

n3
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Integration of Forces
Given the body volume force density b and arbitary spatial volume element v with spatial
surface s then the total force on the volume is found by intergration

F =

∫
v

bdv +

∮
s

tds

=

∫
v

bdv +

∮
s
(σn) ds
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Using Volume Integrals
Recall Gauss–Divergence Theorem, for tensor field A over any closed volume v with surface
s ∫

v
∇ · Adv =

∮
s
Ands

Applying this to
F =

∫
v

bdv +

∮
s
σnds

yields
F =

∫
v
(b +∇ · σ)︸ ︷︷ ︸

f ∗

dv
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The Total Force and the Effective Force
In mechanical equilibrium, the effective force f ∗ must be zero since v was chosen arbitrarily.
Thus writing it out

b +∇ · σ = 0

This is Cauchy’s Equation of Equilibrium. In non equilibrium, we must take inertia forces
into account, F =

∫
v ρẍdv ,

ρẍ = b +∇ · σ

This is the motion of the equation in spatial coordinates for any continuum.
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Recap Work and Power Definitions
Let x(t) be a particle and f some force acting on the particle. Work is force times distance,
for a constant force over a displacement u

W = f · u

Or more general
W =

∫
f · dx

Power is the rate at which work is performed

P ≡ dW
dt

The instantaneous power is P = f · v and so W =
∫ t
0 f · vdt.
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Power of The Effective Force
The power from the effective force

p = f ∗ · v

The total power applied by the effective force

P =

∫
v

pdv =

∫
v

f ∗ · vdv

Rewriting into

P =

∫
v
(b + (∇ · σ)) · vdv

=

∫
v
(∇ · σ) · vdv +

∫
v

b · vdv
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Using the “Product” Rule
Using

∇ · (σv) = (∇ · σ) · v + σ : (∇vT )

Then
P =

∫
v
(∇ · σ) · vdv +

∫
v

b · vdv

Becomes
P =

∫
v
∇ · (σv)dv −

∫
v
σ : VT dv +

∫
v

b · vdv

Recall ∇vT = VT .
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Apply Gauss–Divergence Theorem
Using Gauss–Divergence Theorem

P =

∮
s

n · (σv)ds −
∫

v
σ : VT dv +

∫
v

b · vdv

Using t = σn and σT = σ

P =

∮
s

t · vds −
∫

v
σ : Vdv +

∫
v

b · vdv

Using D = 1
2

(
V+ VT ) and symmetry of σ

P =

∮
s

t · vds −
∫

v
σ : Ddv +

∫
v

b · vdv
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The Power in Spatial Coordinates
The internal stress power term in spatial coordinates

Pe =

∫
v
σ : Vdv =

∫
v
σ : Ddv

Thus, in terms of power, we say that σ is work conjugate to D. Our next task is to rewrite
the internal power in terms of material coordinates. The result is to find the work conjugate
quantities of
• The First Piola–Kirchhoff Stress tensor
• The Second Piola–Kirchhoff Stress tensor
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Power Conjugency of P

Pe =

∫
v
σ : Vdv (by definition)

=

∫
V

jσ : VdV (by dv = jdV )

=

∫
V

jσ :
(
ḞF−1

)
dV (by V = ḞF−1)

=

∫
V

tr
(

jσ
(
ḞF−1

))
dV (by A : B = tr

(
ATB

)
)

=

∫
V

tr
((

jF−1σ
)
Ḟ
)

dV (tr (AB) = tr (BA))

=

∫
V
P : ḞdV (by tr

(
ATB

)
= A : B)

U n i v e r s i t y o f C o p e n h a g e n Stress and Strain Tensors 20–04–2024 40U n i v e r s i t y o f C o p e n h a g e n Stress and Strain Tensors 20–04–2024 40



Power Conjugency of S

Pe =

∫
v
σ : Ddv (by definition)

=

∫
V

jσ : DdV (by dv = jdV )

=

∫
V

jσ :
(
F−T ĖF−1

)
dV (by D = F−T ĖF−1)

=

∫
V

tr
(

jσ
(
F−T ĖF−1

))
dV (by A : B = tr

(
ATB

)
)

=

∫
V

tr
((

jF−1σF−T ) Ė) dV (by tr (AB) = tr (BA))

=

∫
V
S : ĖdV (by tr

(
ATB

)
= A : B)
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The Energy Balance
For the equilibrium system mechanical energy balance means that P = 0. That is the time
derivative of mechanical energy is zero – constant in time.
In the case of a non-equilibrium system we must include inertia forces,

P =

∫
v
(ρẍ − b −∇ · σ) · vdv

Repeating the previous derivations to the total power becomes

P =

∫
v
ρẍ · vdv +

∫
v
σ : Ddv −

∮
s

t · vdv −
∫

v
b · vdv

and it must be zero for the conservation of mechanical energy.
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Constitutive Equations
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The Strain Energy in terms of P
The total strain energy Ψ (The time integral of the “elastic” power Pe),

Ψ(F) =

∫ t

0
P : Ḟ︸ ︷︷ ︸
=Ψ̇

dt

By the chain rule, we have
Ψ̇ =

d
dtΨ(F) =

∂Ψ

∂F
: Ḟ

So
P : Ḟ = Ψ̇ =

∂Ψ

∂F
: Ḟ

and we must have
P =

∂Ψ

∂F
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The Strain Energy in terms of S
The total strain energy Ψ,

Ψ(F) =

∫ t

0
S : Ė︸ ︷︷ ︸
=Ψ̇

dt

By the chain rule, we have
Ψ̇ =

d
dtΨ(E) =

∂Ψ

∂E
: Ė

So
S : Ė = Ψ̇ =

∂Ψ

∂E
: Ė

and we must have
S =

∂Ψ

∂E
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Isotropic Materials
The potential function is a function of invariants of C

Ψ(C) = Ψ(IC , IIC , IIIC)

The Second Piola–Kirchhoff Stress Tensor computed as

S = 2
∂Ψ

∂IC
I+ 4

∂Ψ

∂IIC
C+ 2j2 ∂Ψ

∂IIIC
C−1
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The Saint Venant-Kirchhoff (SVK) Material Model

The simplest hyperelastic material model. The strain-energy is

Ψ(E) =
λ

2
(tr (E))2 + µtr

(
E2
)

where λ and µ are the Lamé constants.

From S = ∂Ψ
∂E we have the stress-strain relation

S = λtr (E) I+ 2µE
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The S-C Relation using the SVK-Material
By definition 2E+ I = C

S =
∂Ψ(C)

∂C

∂C

∂E
= 2

∂Ψ

∂C

For isotropic materials stretch is independent of rotation Ψ(C) = Ψ(IC , IIC , IIIC)

S = 2

(
∂Ψ

∂IC
∂IC
∂C

+
∂Ψ

∂IIC
∂IIC
∂C

+
∂Ψ

∂IIIC
∂IIIC
∂C

)
where

∂IC
∂C

= I ,
∂IIC
∂C

= 2C , and ∂IIIC
∂C

= det(C)C−T = j2C−1
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Assignment

• Discuss why the invariants on Pages 8 and 9 are invariant (ie. independent of rotation).
• Derive the formulas on page 11 from the formulas given in terms of C on Page 8-9. If

you have time derive an eigenvalue version of the invariant II∗C .
• On page 38 we exploit the symmetry of the Cauchy stress tensor. Now prove that if
σ = σT then σ : VT = σ : V and that σ : V = σ : D.

• Derive the formula for S on the page 46.
• Derive the stress-strain relation on the page 47 by differentiation of Ψ.
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Assignment
Download https://github.com/erleben/hyper-sim run a bending rod simulation case
and find a way to visualize the stress tensor field.
• Use the FEM method in the framework with the adaptive time stepping parameter on.
• Try and play around with the Young modulus and Poisson ratio values.

If you have time try to change the stress-strain relation used in the FVM or FEM methods
to that of a neoHookean material (See Bonet and Wood text for examples on constitutive
laws).
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