

Strain and Stress Tensors

Introduction to Concept and Definitions

Kenny Erleben Department of Computer Science

University of Copenhagen

Modeling of Elastic Solids

The partial differential equation, Cauchy Equation, gives the equation of motion of an elastic solid

$$\rho \ddot{\mathbf{x}} = \mathbf{b} + \nabla \cdot \boldsymbol{\sigma}$$

The boundary conditions of the Cauchy stress tensor σ are given by

 $\sigma \boldsymbol{n} = \boldsymbol{t}$

where t is a known applied surface traction. Finally, a constitutive law is needed that provides a relationship between stress and strain

$$\mathbf{S} = \frac{\partial \Psi}{\partial \mathbf{E}}$$

where **S** is 2. Piola–Kirchhoff stress tensor and **E** is the Green strain tensor. Now we will derive all these equations that we need.

Kinematics – Learning The Definitions of The Strain Tensors

The Material and Spatial Coordinates

We have two sets of coordinates

- Let **X** be undeformed coordinates
- and **x** the deformed coordinates

The deformation is given by the mapping from undeformed coordinates into deformed coordinates,

$$\boldsymbol{x} = \boldsymbol{\Phi}(\boldsymbol{X}, t)$$

Observe

- The same global reference coordinate system is used for both sets of coordinates.
- Undeformed coordinates are sometimes also called material coordinates and deformed coordinates are the spatial coordinates.

The Deformation Gradient

By definition of differentials we have

$$d\boldsymbol{x} = \underbrace{\frac{\partial \boldsymbol{\Phi}}{\partial \boldsymbol{X}}}_{\boldsymbol{\mathsf{F}}} d\boldsymbol{X}$$

The partial derivative $\frac{\partial \Phi}{\partial X} = \mathbf{F}$ is referred to as the Deformation gradient.

In particular, we have

$$\mathbf{F}_{ij} = \frac{\partial \mathbf{\Phi}_i}{\partial \mathbf{X}_j} = \frac{\partial \mathbf{x}_i}{\partial \mathbf{X}_j}$$

Investigating Local Deformation Measures

Think of dX_1 and dX_2 as arbitary chosen small "needles". By definition we have

 $d\mathbf{x}_1 = \mathbf{F} d\mathbf{X}_1$ $d\mathbf{x}_2 = \mathbf{F} d\mathbf{X}_2$

To describe any local deformation we investigate the dot products

 $d \mathbf{x}_1 \cdot d \mathbf{x}_2$ and $d \mathbf{X}_1 \cdot d \mathbf{X}_2$

as these hold information about any local angle or length deformations.

The Right Cauchy–Green Deformation Tensor

First we will try to express $dx_1 \cdot dx_2$ in terms of material coordinates,

$$d\mathbf{x}_1 \cdot d\mathbf{x}_2 = d\mathbf{x}_1^T d\mathbf{x}_2$$

= $(\mathbf{F}d\mathbf{X}_1)^T (\mathbf{F}d\mathbf{X}_2)$
= $d\mathbf{X}_1^T \underbrace{(\mathbf{F}^T\mathbf{F})}_{\mathbf{C}} d\mathbf{X}_2$

where

 $\mathbf{C} = \mathbf{F}^{\mathcal{T}} \mathbf{F}$

is called the right Cauchy–Green Deformation tensor.

Tensor Invariants (1/2)

The eigenvalues of \mathbf{C} are independent of rotation thus the coefficients of the characteristic polynomial are invariants

$$\det \left(\mathbf{C} - \mathbf{I}\lambda\right) = -\lambda^3 + \mathbf{I}_{\mathcal{C}}\lambda^2 - \mathbf{II}_{\mathcal{C}}^*\lambda + \mathbf{III}_{\mathcal{C}} = 0$$

where

$$\begin{split} \mathbf{I}_{\mathcal{C}} &= \mathsf{tr}\left(\mathbf{C}\right) = \mathbf{C} : \mathbf{I} \\ \mathbf{II}_{\mathcal{C}}^{*} &= \frac{1}{2} \left(\mathsf{tr}\left(\mathbf{C}\right)^{2} - \mathsf{tr}\left(\mathbf{C}^{2}\right) \right) \\ \mathbf{III}_{\mathcal{C}} &= \mathsf{det}\left(\mathbf{C}\right) \end{split}$$

Tensor Invariants (2/2)

We prefer an alternative definition of the second invariant

$$\mathsf{II}_{\mathcal{C}} = \mathsf{tr}\left(\mathbf{C}^2
ight) = \mathbf{C}:\mathbf{C}$$

as it simplifies later equations

The Eigenvalue Decomposition

Since **C** is a symmetric positive definite we know that an eigenvalue decomposition exists

$$\mathbf{CN} - \mathbf{N} = 0$$

where

$$\mathbf{N} = \begin{bmatrix} \mathbf{N}_1 & \mathbf{N}_2 & \mathbf{N}_3 \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1^2 & 0 & 0\\ 0 & \lambda_2^2 & 0\\ 0 & 0 & \lambda_3^2 \end{bmatrix}$$

and $\mathbf{N}^T \mathbf{N} = \mathbf{N} \mathbf{N}^T = \mathbf{I}$ and $0 < \lambda_3^2 \le \lambda_2^2 \le \lambda_1^2 \in \mathbb{R}$. This can be rewritten as

$$\mathbf{C} = \mathbf{N}\mathbf{N}^{T} = \sum \lambda_{i}^{2} \left(\mathbf{N}_{i} \mathbf{N}_{i}^{T} \right)$$

Invariants in terms of Eigenvalues

Observe that knowing the eigenvalues λ_i^2 of **C** we can compute the tensor invariants as

$$I_{\mathcal{C}} = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$$
$$II_{\mathcal{C}} = \lambda_1^4 + \lambda_2^4 + \lambda_3^4$$
$$II_{\mathcal{C}} = \lambda_1^2 \lambda_2^2 \lambda_3^2$$

These formulas will become handy when we later wish to change coordinates.

A Rotation Tensor

The square root of C is

 $\mathbf{C} = \sqrt{\mathbf{C}}\sqrt{\mathbf{C}} = \mathbf{U}\mathbf{U}$

with

$$\mathbf{U} = \sum_{i} \lambda_{i} \left(\mathbf{N}_{i} \mathbf{N}_{i}^{T} \right)$$

Let us define the tensor ${\boldsymbol{\mathsf{R}}}$ as

$$\mathbf{R} = \mathbf{F}\mathbf{U}^{-1}$$

We can then prove that $\boldsymbol{\mathsf{R}}$ is a rotation tensor

$$\mathbf{R}^{T}\mathbf{R} = \mathbf{U}^{-T}\mathbf{F}^{T}\mathbf{F}\mathbf{U}^{-1} = \mathbf{U}^{-T}\mathbf{C}\mathbf{U}^{-1} = \mathbf{U}^{-T}\mathbf{U}\mathbf{U}\mathbf{U}^{-1} = \mathbf{I}$$

The Polar Decomposition of Deformation Gradient

The new rotation tensor \mathbf{R} implies that \mathbf{F} can be decomposed as

 $\mathbf{F} = \mathbf{R}\mathbf{U}$

The implication is

$$d\boldsymbol{x} = \boldsymbol{\mathsf{F}}\boldsymbol{d}X = \boldsymbol{\mathsf{R}}\left(\boldsymbol{\mathsf{U}}\boldsymbol{d}\boldsymbol{X}\right)$$

where $(\mathbf{U}d\mathbf{X})$ is a stretch along the eigenvectors and **R** is a rotation of the stretched vector.

Therefore

- **U** is called the stretch tensor
- **R** is called the rotation tensor

The Left Cauchy–Green Deformation Tensor

Next we will rewrite $dX_1 \cdot dX_2$ in terms of spatial coordinates,

$$d\boldsymbol{X}_{1} \cdot d\boldsymbol{X}_{2} = d\boldsymbol{X}_{1}^{T} d\boldsymbol{X}_{2}$$
$$= \left(\boldsymbol{\mathsf{F}}^{-1} d\boldsymbol{x}_{1}\right)^{T} \left(\boldsymbol{\mathsf{F}}^{-1} d\boldsymbol{x}_{2}\right)$$
$$= d\boldsymbol{x}_{1}^{T} \left(\underbrace{\boldsymbol{\mathsf{FF}}}_{\boldsymbol{\mathsf{B}}}^{T}\right)^{-1} d\boldsymbol{x}_{2}$$

where

 $\bm{\mathsf{B}} = \bm{\mathsf{F}}\bm{\mathsf{F}}^{\mathcal{T}}$

is called the left Cauchy-Green Deformation tensor.

The Lagrange–Green Strain Tensor

We look at the deformation change. The difference between spatial and material dot products expressed in material coordinates,

$$\frac{1}{2} (d\mathbf{x}_1 \cdot d\mathbf{x}_2 - d\mathbf{X}_1 \cdot d\mathbf{X}_2) = \frac{1}{2} (d\mathbf{x}_1^T d\mathbf{x}_2 - d\mathbf{X}_1^T d\mathbf{X}_2)$$
$$= \frac{1}{2} ((\mathbf{F}d\mathbf{X}_1)^T (\mathbf{F}d\mathbf{X}_2) - d\mathbf{X}_1^T d\mathbf{X}_2)$$
$$= d\mathbf{X}_1^T \underbrace{\frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I})}_{\mathbf{E}} d\mathbf{X}_2$$

where

$$\mathbf{E} = \frac{1}{2} \left(\mathbf{F}^{\mathsf{T}} \mathbf{F} - \mathbf{I} \right) = \frac{1}{2} \left(\mathbf{C} - \mathbf{I} \right)$$

is called the Green Strain tensor.

The Euler–Almansi Strain Tensor

We describe the deformation change in terms of spatial coordinates,

$$\begin{aligned} \frac{1}{2} \left(d\mathbf{x}_1 \cdot d\mathbf{x}_2 - d\mathbf{X}_1 \cdot d\mathbf{X}_2 \right) &= \frac{1}{2} \left(d\mathbf{x}_1^T d\mathbf{x}_2 - d\mathbf{X}_1^T d\mathbf{X}_2 \right) \\ &= \frac{1}{2} \left(d\mathbf{x}_1^T d\mathbf{x}_2 - \left(\mathbf{F}^{-1} d\mathbf{x}_1 \right)^T \left(\mathbf{F}^{-1} d\mathbf{x}_2 \right) \right) \\ &= d\mathbf{x}_1^T \underbrace{\frac{1}{2} \left(\mathbf{I} - \left(\mathbf{F} \mathbf{F}^T \right)^{-1} \right)}_{\mathbf{g}} d\mathbf{x}_2 \end{aligned}$$

where

$$\mathbf{e} = \frac{1}{2} \left(\mathbf{I} - \left(\mathbf{F} \mathbf{F}^{\mathcal{T}} \right)^{-1} \right) = \frac{1}{2} \left(\mathbf{I} - \mathbf{B}^{-1} \right)$$

is called the Euler Strain tensor.

Spatial to Material Tensor Conversions

Observe that

$$\mathbf{e} = \mathbf{F}^{-T} \mathbf{E} \mathbf{F}^{-1}$$

 $\mathbf{E} = \mathbf{F}^{T} \mathbf{e} \mathbf{F}$

These are general tensor conversion formulas.

The Displacement Field

Let us define the displacement field as follows

$$\boldsymbol{u} = \boldsymbol{x} - \boldsymbol{X}$$

Then we trivially have

 $\boldsymbol{x} = \boldsymbol{u} + \boldsymbol{X}$

and

$$\mathbf{F} = \frac{\partial (\boldsymbol{u} + \boldsymbol{X})}{\partial \boldsymbol{X}} = \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} + \mathbf{I}$$
$$\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} = \mathbf{F} - \mathbf{I}$$

or

Putting Displacement Field into Play

Let us use $\mathbf{F} = \frac{\partial \mathbf{u}}{\partial \mathbf{X}} + \mathbf{I}$ in the definition of the Green Strain Tensor

$$\mathbf{E} = \frac{1}{2} \left(\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} + \mathbf{I} \right)^{T} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} + \mathbf{I} \right) - \mathbf{I} \right)$$
$$= \frac{1}{2} \left(\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}^{T} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} \right) + \left(\mathbf{I}^{T} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} \right) + \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}^{T} \mathbf{I} \right) + \left(\mathbf{I}^{T} \mathbf{I} \right) - \mathbf{I} \right)$$
$$= \frac{1}{2} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}^{T} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}^{T} \right)$$

Assuming Small Displacement Gradients

If
$$\| \frac{\partial u}{\partial X} \| \ll 1$$
 then $\frac{\partial u}{\partial X}^T \frac{\partial u}{\partial X} \approx \mathbf{0}$ and we have

$$\mathbf{E} \approx \varepsilon_0 = \frac{1}{2} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}^{\mathsf{T}} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} \right)$$

This strain tensor is called the Cauchy Strain tensor. If we used ${\bf e}$ instead of ${\bf E}$ we would have found

$$\mathbf{e} \approx \varepsilon = \frac{1}{2} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}^{T} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)$$

However, for small displacement gradients $x \approx X$, $\frac{\partial u}{\partial x} \approx \frac{\partial u}{\partial X}$, and so $\varepsilon_0 \approx \varepsilon$.

The Strain Tensors

Green Strain Tensor

$$\mathbf{E} = \frac{1}{2} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}^{\mathsf{T}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}^{\mathsf{T}} \right)$$

Cauchy Strain Tensor

$$\varepsilon \approx \varepsilon_0 = \frac{1}{2} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}^T + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} \right)$$

Observe that using $\frac{\partial u}{\partial X} = \mathbf{F} - \mathbf{I}$ we have

$$\varepsilon_0 = \frac{1}{2} \left(\mathbf{F}^T + \mathbf{F} \right) - \mathbf{I}$$

The Velocity

Since $\mathbf{x} = \Phi(\mathbf{X}, t)$ then the spatial velocity of a material point is

$$\mathbf{v}(\mathbf{X},t) \equiv \dot{\mathbf{x}}(\mathbf{X},t) = \frac{\partial \mathbf{x}(\mathbf{X},t)}{\partial t} = \frac{\partial \Phi\left(\mathbf{X},t\right)}{\partial t}$$

or given in terms of spatial coordinates

$$oldsymbol{v}(oldsymbol{x},t)=oldsymbol{v}\left(\Phi^{-1}\left(oldsymbol{x},t
ight),t
ight)$$

The Velocity Gradient

The velocity gradient wrt. spatial coordinates is then

$$\mathbf{V} \equiv \frac{\partial \mathbf{v}(\mathbf{x}, t)}{\partial \mathbf{x}}$$

Observe (Notice $\frac{\partial \mathbf{X}}{\partial t} = 0$) $\dot{\mathbf{F}} = \frac{d}{dt} \left(\frac{\partial \Phi}{\partial \mathbf{X}} \right) = \frac{\partial}{\partial \mathbf{X}} \left(\frac{\partial \Phi}{\partial t} \right) = \frac{\partial}{\partial \mathbf{X}} \mathbf{v} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \frac{\partial \Phi}{\partial \mathbf{X}} = \mathbf{VF}$

Resulting in

$$\mathbf{V} = \dot{\mathbf{F}}\mathbf{F}^{-1}$$

The Rate of Deformation

Taking the derivative

$$\frac{d}{dt}(d\boldsymbol{x}_1 \cdot d\boldsymbol{x}_2) = d\boldsymbol{X}_1^T \dot{\boldsymbol{\mathsf{C}}} d\boldsymbol{X}_2 = 2d\boldsymbol{X}_1^T \dot{\boldsymbol{\mathsf{E}}} d\boldsymbol{X}_2$$

because $\mathbf{E} = \frac{1}{2}(\mathbf{C} - \mathbf{I})$. The material strain rate tensor is

$$\dot{\mathbf{E}} = rac{1}{2}\dot{\mathbf{C}} = rac{1}{2}\left(\dot{\mathbf{F}}^{T}\mathbf{F} + \mathbf{F}^{T}\dot{\mathbf{F}}
ight)$$

Using $d\boldsymbol{X} = \boldsymbol{\mathsf{F}}^{-1} d\boldsymbol{x}$ we have

$$\frac{1}{2}\frac{d}{dt}\left(d\mathbf{x}_{1}\cdot d\mathbf{x}_{2}\right) = d\mathbf{x}_{1}^{T}\underbrace{\mathbf{F}^{-T}\dot{\mathbf{E}}\mathbf{F}^{-1}}_{\mathbf{D}}d\mathbf{x}_{2}$$

where **D** is the rate of deformation tensor

Coordinate Conversion of Rate Tensors

Observe that similar to the Euler-Almansi and Lagrange-Green strain tensors we have

 $\mathbf{D} = \mathbf{F}^{-T} \dot{\mathbf{E}} \mathbf{F}^{-1}$ $\dot{\mathbf{E}} = \mathbf{F}^{T} \mathbf{D} \mathbf{F}$

From this, we also find that

$$\begin{split} \mathbf{D} &= \mathbf{F}^{-T} \dot{\mathbf{E}} \mathbf{F}^{-1} \\ &= \mathbf{F}^{-T} \frac{1}{2} \left(\dot{\mathbf{F}}^{T} \mathbf{F} + \mathbf{F}^{T} \dot{\mathbf{F}} \right) \mathbf{F}^{-1} \\ &= \frac{1}{2} \left(\mathbf{V} + \mathbf{V}^{T} \right) \end{split}$$

because $\mathbf{V} = \dot{\mathbf{F}}\mathbf{F}^{-1}$. Thus **D** is the symmetric part of the velocity gradient.

Dynamics – Learning The Definitions of The Stress Tensors and Power

A Spatial Surface Element

The spatial surface element ds can be written as

$$dm{s} = egin{bmatrix} dm{s}_1 \ dm{s}_2 \ dm{s}_3 \end{bmatrix}$$

where ds_i is the projection of the area of surface ds onto the *i*th coordinate axis.

Observe that the surface normal is given by

$$\boldsymbol{n} = rac{d\boldsymbol{s}}{\parallel d\boldsymbol{s} \parallel}$$

Cauchy's Stress Hypothesis

Definition: Stress is force per unit area. If we apply the force df to the surface element ds

$$d\boldsymbol{f}_1 = \sigma_{11}d\boldsymbol{s}_1 + \sigma_{12}d\boldsymbol{s}_3 + \sigma_{13}d\boldsymbol{s}_3$$
$$d\boldsymbol{f}_2 = \sigma_{21}d\boldsymbol{s}_1 + \sigma_{22}d\boldsymbol{s}_3 + \sigma_{23}d\boldsymbol{s}_3$$
$$d\boldsymbol{f}_3 = \sigma_{31}d\boldsymbol{s}_1 + \sigma_{32}d\boldsymbol{s}_3 + \sigma_{33}d\boldsymbol{s}_3$$

where σ_{ij} depends on position and time, collecting them

$$\sigma = \left[\sigma_{ij}\right]$$

we have

$$d\mathbf{f} = \sigma d\mathbf{s}$$

where σ is the Cauchy Stress Tensor.

The First Piola-Kirchhoff Stress Tensor

By definition the Cauchy stress tensor

$$d\mathbf{f} = \sigma d\mathbf{s}$$

The first Piola-Kirchhoff stess tensor is defined as

 $d\boldsymbol{f} = \mathbf{P}d\boldsymbol{S}$

So we must have

$$\sigma ds = df = \mathbf{P} dS$$

Using Nanson's Relation

$$\sigma j \mathbf{F}^{-T} d\mathbf{S} = d\mathbf{f} = \mathbf{P} d\mathbf{S}$$

From this we have the relation between the Cauchy stress tensor and the first Piola–Kirchhoff stress tensor

The Second Piola-Kirchhoff Stress Tensor

By definition the Cauchy stress tensor

$$d\mathbf{f} = \sigma d\mathbf{s}$$

The second Piola-Kirchhoff stess tensor is defined as

 $d\textbf{\textit{F}}=\textbf{S}d\textbf{\textit{S}}$

However $d\mathbf{f} = \mathbf{F} d\mathbf{F}$ so we must have

$$\sigma ds = df = FdF = FSdS$$
$$\sigma ds = FSdS$$
$$jF^{-1}\sigma F^{-T}dS = SdS$$

The Traction Force

We have

$$d\mathbf{f} = \sigma d\mathbf{s}$$

If we divide by surface area we will have traction $m{t} = dm{f} / \parallel dm{s} \parallel$

 $\boldsymbol{t} = \sigma \boldsymbol{n}$

where

$$\begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \\ \mathbf{t}_3 \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \begin{bmatrix} \mathbf{n}_1 \\ \mathbf{n}_2 \\ \mathbf{n}_3 \end{bmatrix}$$

Integration of Forces

Given the body volume force density \boldsymbol{b} and arbitary spatial volume element v with spatial surface s then the total force on the volume is found by intergration

$$\mathcal{F} = \int_{\mathbf{v}} \mathbf{b} d\mathbf{v} + \oint_{\mathbf{s}} \mathbf{t} d\mathbf{s}$$
$$= \int_{\mathbf{v}} \mathbf{b} d\mathbf{v} + \oint_{\mathbf{s}} (\sigma \mathbf{n}) d\mathbf{s}$$

Using Volume Integrals

Recall Gauss–Divergence Theorem, for tensor field **A** over any closed volume v with surface s

$$\int_{V}
abla \cdot \mathbf{A} dv = \oint_{s} \mathbf{A} n ds$$

•

Applying this to

$$\mathcal{F} = \int_{v} \boldsymbol{b} dv + \oint_{s} \sigma \boldsymbol{n} ds$$

yields

$$\boldsymbol{\mathcal{F}} = \int_{\boldsymbol{v}} \underbrace{(\boldsymbol{b} + \nabla \cdot \boldsymbol{\sigma})}_{\boldsymbol{f}^*} d\boldsymbol{v}$$

The Total Force and the Effective Force

In mechanical equilibrium, the effective force f^* must be zero since v was chosen arbitrarily. Thus writing it out

$$\boldsymbol{b} + \nabla \cdot \boldsymbol{\sigma} = 0$$

This is Cauchy's Equation of Equilibrium. In non equilibrium, we must take inertia forces into account, $\mathcal{F} = \int_{v} \rho \ddot{x} dv$,

$$\rho \ddot{\mathbf{x}} = \mathbf{b} + \nabla \cdot \sigma$$

This is the motion of the equation in spatial coordinates for any continuum.

Recap Work and Power Definitions

Let $\mathbf{x}(t)$ be a particle and \mathbf{f} some force acting on the particle. Work is force times distance, for a constant force over a displacement \mathbf{u}

$$W = \boldsymbol{f} \cdot \boldsymbol{u}$$

Or more general

$$W = \int \boldsymbol{f} \cdot d\boldsymbol{x}$$

Power is the rate at which work is performed

$$P \equiv rac{dW}{dt}$$

The instantaneous power is $P = \mathbf{f} \cdot \mathbf{v}$ and so $W = \int_0^t \mathbf{f} \cdot \mathbf{v} dt$.

Power of The Effective Force

The power from the effective force

$$p = f^* \cdot v$$

The total power applied by the effective force

$$P = \int_{v} p dv = \int_{v} \boldsymbol{f}^* \cdot \boldsymbol{v} dv$$

Rewriting into

$$P = \int_{v} (\boldsymbol{b} + (\nabla \cdot \sigma)) \cdot \boldsymbol{v} dv$$
$$= \int_{v} (\nabla \cdot \sigma) \cdot \boldsymbol{v} dv + \int_{v} \boldsymbol{b} \cdot \boldsymbol{v} dv$$

Using the "Product" Rule

Using

$$\nabla \cdot (\sigma \mathbf{v}) = (\nabla \cdot \sigma) \cdot \mathbf{v} + \sigma : (\nabla \mathbf{v}^{\mathsf{T}})$$

Then

$$P = \int_{\boldsymbol{v}} (\nabla \cdot \boldsymbol{\sigma}) \cdot \boldsymbol{v} d\boldsymbol{v} + \int_{\boldsymbol{v}} \boldsymbol{b} \cdot \boldsymbol{v} d\boldsymbol{v}$$

Becomes

$$P = \int_{V} \nabla \cdot (\sigma \mathbf{v}) d\mathbf{v} - \int_{V} \sigma : \mathbf{V}^{\mathsf{T}} d\mathbf{v} + \int_{V} \mathbf{b} \cdot \mathbf{v} d\mathbf{v}$$

Recall $\nabla \boldsymbol{v}^T = \boldsymbol{V}^T$.

Apply Gauss–Divergence Theorem

Using Gauss–Divergence Theorem

$$P = \oint_{s} \boldsymbol{n} \cdot (\sigma \boldsymbol{v}) ds - \int_{v} \sigma : \boldsymbol{V}^{T} dv + \int_{v} \boldsymbol{b} \cdot \boldsymbol{v} dv$$

Using $\boldsymbol{t} = \sigma \boldsymbol{n}$ and $\sigma^T = \sigma$

$$P = \oint_{s} oldsymbol{t} \cdot oldsymbol{v} ds - \int_{v} \sigma : oldsymbol{V} dv + \int_{v} oldsymbol{b} \cdot oldsymbol{v} dv$$

Using $\mathbf{D} = \frac{1}{2} \left(\mathbf{V} + \mathbf{V}^T \right)$ and symmetry of σ

$$P = \oint_{s} \boldsymbol{t} \cdot \boldsymbol{v} ds - \int_{v} \sigma : \boldsymbol{\mathsf{D}} dv + \int_{v} \boldsymbol{b} \cdot \boldsymbol{v} dv$$

The Power in Spatial Coordinates

The internal stress power term in spatial coordinates

$$P_{\mathsf{e}} = \int_{\mathsf{v}} \sigma : \mathbf{V} d\mathsf{v} = \int_{\mathsf{v}} \sigma : \mathbf{D} d\mathsf{v}$$

Thus, in terms of power, we say that σ is work conjugate to **D**. Our next task is to rewrite the internal power in terms of material coordinates. The result is to find the work conjugate quantities of

- The First Piola-Kirchhoff Stress tensor
- The Second Piola-Kirchhoff Stress tensor

Power Conjugency of ${\boldsymbol{\mathsf{P}}}$

$$P_{e} = \int_{V} \sigma : \mathbf{V} dv$$

= $\int_{V} j\sigma : \mathbf{V} dV$
= $\int_{V} j\sigma : (\dot{\mathbf{F}}\mathbf{F}^{-1}) dV$
= $\int_{V} \operatorname{tr} (j\sigma (\dot{\mathbf{F}}\mathbf{F}^{-1})) dV$
= $\int_{V} \operatorname{tr} ((j\mathbf{F}^{-1}\sigma) \dot{\mathbf{F}}) dV$
= $\int_{V} \mathbf{P} : \dot{\mathbf{F}} dV$

(by definition) (by dv = jdV) (by $\mathbf{V} = \dot{\mathbf{F}}\mathbf{F}^{-1}$) (by $\mathbf{A} : \mathbf{B} = \operatorname{tr}(\mathbf{A}^T \mathbf{B})$) (tr(AB) = tr(BA))(by tr $(\mathbf{A}^T \mathbf{B}) = \mathbf{A} : \mathbf{B}$)

Power Conjugency of $\boldsymbol{\mathsf{S}}$

$$P_{e} = \int_{V} \sigma : \mathbf{D} dv$$

= $\int_{V} j\sigma : \mathbf{D} dV$
= $\int_{V} j\sigma : (\mathbf{F}^{-T} \dot{\mathbf{E}} \mathbf{F}^{-1}) dV$
= $\int_{V} \operatorname{tr} \left(j\sigma \left(\mathbf{F}^{-T} \dot{\mathbf{E}} \mathbf{F}^{-1} \right) \right) dV$
= $\int_{V} \operatorname{tr} \left(\left(j\mathbf{F}^{-1}\sigma\mathbf{F}^{-T} \right) \dot{\mathbf{E}} \right) dV$
= $\int_{V} \mathbf{S} : \dot{\mathbf{E}} dV$

(by definition) (by dv = jdV) (by $\mathbf{D} = \mathbf{F}^{-T} \dot{\mathbf{E}} \mathbf{F}^{-1}$) (by $\mathbf{A} : \mathbf{B} = \operatorname{tr}(\mathbf{A}^T \mathbf{B})$) (by tr $(\mathbf{AB}) = tr (\mathbf{BA})$) (by tr $(\mathbf{A}^T \mathbf{B}) = \mathbf{A} : \mathbf{B}$)

The Energy Balance

For the equilibrium system mechanical energy balance means that P = 0. That is the time derivative of mechanical energy is zero – constant in time.

In the case of a non-equilibrium system we must include inertia forces,

$$P = \int_{V} (\rho \ddot{\mathbf{x}} - \mathbf{b} - \nabla \cdot \sigma) \cdot \mathbf{v} dv$$

Repeating the previous derivations to the total power becomes

$$P = \int_{v} \rho \ddot{\boldsymbol{x}} \cdot v dv + \int_{v} \sigma : \boldsymbol{\mathsf{D}} dv - \oint_{s} \boldsymbol{t} \cdot \boldsymbol{v} dv - \int_{v} \boldsymbol{b} \cdot \boldsymbol{v} dv$$

and it must be zero for the conservation of mechanical energy.

Constitutive Equations

The Strain Energy in terms of **P**

The total strain energy Ψ (The time integral of the "elastic" power $P_{\rm e}$),

$$\Psi(\mathbf{F}) = \int_0^t \underbrace{\mathbf{P} : \dot{\mathbf{F}}}_{=\dot{\Psi}} dt$$

By the chain rule, we have

$$\dot{\Psi} = \frac{d}{dt}\Psi(\mathbf{F}) = \frac{\partial\Psi}{\partial\mathbf{F}} : \dot{\mathbf{F}}$$
$$\mathbf{P} : \dot{\mathbf{F}} = \dot{\Psi} = \frac{\partial\Psi}{\partial\mathbf{F}} : \dot{\mathbf{F}}$$

and we must have

So

$$\mathbf{P} = \frac{\partial \Psi}{\partial \mathbf{F}}$$

The Strain Energy in terms of \boldsymbol{S}

The total strain energy Ψ ,

$$\Psi(\mathbf{F}) = \int_0^t \underbrace{\mathbf{S}: \dot{\mathbf{E}}}_{=\dot{\Psi}} dt$$

By the chain rule, we have

$$\dot{\Psi} = rac{d}{dt}\Psi(\mathbf{E}) = rac{\partial\Psi}{\partial\mathbf{E}}:\dot{\mathbf{E}}$$

$$\mathbf{S}:\dot{\mathbf{E}}=\dot{\Psi}=rac{\partial\Psi}{\partial\mathbf{E}}:\dot{\mathbf{E}}$$

and we must have

So

$$\mathbf{S} = \frac{\partial \Psi}{\partial \mathbf{E}}$$

Isotropic Materials

The potential function is a function of invariants of ${f C}$

$$\Psi(\mathbf{C}) = \Psi(\mathbf{I}_{\mathcal{C}}, \mathbf{II}_{\mathcal{C}}, \mathbf{III}_{\mathcal{C}})$$

The Second Piola-Kirchhoff Stress Tensor computed as

$$\mathbf{S} = 2\frac{\partial\Psi}{\partial I_{C}}\mathbf{I} + 4\frac{\partial\Psi}{\partial II_{C}}\mathbf{C} + 2j^{2}\frac{\partial\Psi}{\partial III_{C}}\mathbf{C}^{-1}$$

The Saint Venant-Kirchhoff (SVK) Material Model

The simplest hyperelastic material model. The strain-energy is

$$\Psi(\mathbf{E}) = rac{\lambda}{2} \left(\operatorname{tr}\left(\mathbf{E}
ight)
ight)^2 + \mu \operatorname{tr}\left(\mathbf{E}^2
ight)$$

where λ and μ are the Lamé constants.

From ${f S}=rac{\partial\Psi}{\partial{f E}}$ we have the stress-strain relation

$$\mathbf{S} = \lambda \mathrm{tr}\left(\mathbf{E}\right)\mathbf{I} + 2\mu\mathbf{E}$$

The S-C Relation using the SVK-Material

By definition $2\mathbf{E} + \mathbf{I} = \mathbf{C}$

$$\mathbf{S} = rac{\partial \Psi(\mathbf{C})}{\partial \mathbf{C}} rac{\partial \mathbf{C}}{\partial \mathbf{E}} = 2 rac{\partial \Psi}{\partial \mathbf{C}}$$

For isotropic materials stretch is independent of rotation $\Psi(\mathbf{C}) = \Psi(\mathbf{I}_{C}, \mathbf{II}_{C}, \mathbf{II}_{C})$

$$\mathbf{S} = 2\left(\frac{\partial\Psi}{\partial I_{C}}\frac{\partial I_{C}}{\partial \mathbf{C}} + \frac{\partial\Psi}{\partial II_{C}}\frac{\partial I_{C}}{\partial \mathbf{C}} + \frac{\partial\Psi}{\partial II_{C}}\frac{\partial II_{C}}{\partial \mathbf{C}}\right)$$

where

$$\frac{\partial I_{\mathcal{C}}}{\partial \mathbf{C}} = \mathbf{I}, \quad \frac{\partial II_{\mathcal{C}}}{\partial \mathbf{C}} = 2\mathbf{C}, \quad \text{and} \quad \frac{\partial III_{\mathcal{C}}}{\partial \mathbf{C}} = \det(\mathbf{C})\mathbf{C}^{-\mathcal{T}} = j^2\mathbf{C}^{-1}$$

Assignment

- Discuss why the invariants on Pages 8 and 9 are invariant (ie. independent of rotation).
- Derive the formulas on page 11 from the formulas given in terms of **C** on Page 8-9. If you have time derive an eigenvalue version of the invariant II^{*}_C.
- On page 38 we exploit the symmetry of the Cauchy stress tensor. Now prove that if $\sigma = \sigma^T$ then $\sigma : \mathbf{V}^T = \sigma : \mathbf{V}$ and that $\sigma : \mathbf{V} = \sigma : \mathbf{D}$.
- Derive the formula for **S** on the page 46.
- Derive the stress-strain relation on the page 47 by differentiation of Ψ .

Assignment

Download https://github.com/erleben/hyper-sim run a bending rod simulation case and find a way to visualize the stress tensor field.

- Use the FEM method in the framework with the adaptive time stepping parameter on.
- Try and play around with the Young modulus and Poisson ratio values.

If you have time try to change the stress-strain relation used in the FVM or FEM methods to that of a neoHookean material (See Bonet and Wood text for examples on constitutive laws).