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The General Problem
Given
• N points pi ∈ RD for i = 1..N (Usually D = 2 or D = 3)
• For each point we know some value φi ∈ R

We wish
• to find some function f (x) : RD 7→ R. We write x =

[
x1 x2 · · · xD

]T

• such that f (x) interpolates all φi ’s, f (pi) = φi for all i
• and to know the value of f (x) at some location x 6= pi for all i

Observe f (x) as an approximation to some unknown function φ(x) that we only know some
sample values of.
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Method of Least Squares (1/5)

Assume a linear basis function b : RD 7→ RD+1

b(x) ≡
[
1 x1 . . . xD

]T

then we find optimal coefficients c ∈ RD+1 of interpolating function

fLS(x) ≡ b(x)Tc

such that

b(p1)
Tc = φ1

...
b(pN)

Tc = φN
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Method of Least Squares (2/5)

Define

B =


b(p1)

T

b(p2)
T

...
b(pN)

T

 and V =


φ1
φ2
...
φN


Then we have

Bc = V
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Method of Least Squares (3/5)

This linear system of equations
Bc = V

can be solved with the method of normal equations (aka. pseudo inverse).

BTB︸ ︷︷ ︸
HLS

c = BTV

c = H−1
LSB

TV
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Method of Least Squares (4/5)

Let us explore the connection to unconstrained optimization

Bc = V

Let us define the error as
ε = Bc− V

Then we wish to solve for the solution c∗

c∗ = argmin
c

1

2
ε(c)2︸ ︷︷ ︸

≡ψLS(c)
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Method of Least Squares (5/5)

The first-order solution is given by

∇ψLS(c) =
∂

∂c

(
1

2
ε(c)2

)
= 0

BT (Bc− V) = 0

Hence, we arrive at the solution

c = H−1
LSB

TV
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Method of Moving Least Squares (1/3)

The main idea in the moving least squares method is to let the coefficients c change
depending on x.

The trick is to use a weighting function w(r) = w(‖ x− pi ‖) = w(x,pi) : R+
0 7→ R+

w(x,p1)b(p1)
Tc = w(x,p1)φ1

w(x,p2)b(p2)
Tc = w(x,p2)φ2

...
w(x,pN)b(pN)

Tc = w(x,pN)φN

Observe this is just a scaling of each equation that we had in the least squares method.
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Method of Moving Least Squares (2/3)

The weight function can be chosen as

w(r) ≡ 1

r2 + ε2

where r =‖ x− pi ‖ for some i and an
user-specified ε > 0. One should be careful
in selecting parameters as Bumps and
dimples occur unless ε is substantially larger
than the spacing between points.
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Method of Moving Least Squares (3/3)

The weighted equations can now be written in matrix form as

W(x)Bc =W(x)V

where W(x) is a diagonal matrix of the weight functions. The resulting normal equations areBT (W(x))2B︸ ︷︷ ︸
HMLS(x)

c = BT (W(x))2 V

Now, we can evaluate the interpolating function using

fMLS(x) = bT (x) (HMLS(x))
−1BT (W(x))2V︸ ︷︷ ︸
c(x)
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Augmented Radial Basis Function Method (1/3)

Using the radial basis function, w : RD 7→ R,

w(y) =‖ y ‖2 log ‖ y ‖

This is the thin plate spline (TPS) radial basis function. The interpolation function is now
defined as

fRBF(x) = b(x)Tc+
N∑

j=1

λjw(x− pj)

where b(x) =
[
1 x1 · · · xD

]T and the coefficients are c =
[
c0 c1 · · · cD

]T . The
λj ’s are Lagrange multipliers
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Augmented Radial Basis Function Method (2/3)

We have the constraints

φ1 = f (p1)
...

φN = f (pN)

and the augmented/orthogonality constraints

N∑
j=1

λjb(pj) = 0

are also imposed.
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Augmented Radial Basis Function Method (3/3)

Defining wij = w(pi − pj) and for D = 3 this can be formulated as a linear system

w11 w12 · · · w1N 1 p1,1 p1,2 p1,3
w21 w22 · · · w2N 1 p2,1 p2,2 p2,3

...
...

...
...

...
...

wN1 wN2 · · · wNN 1 pN,1 pN,2 pN,3
1 1 · · · 1 0 0 0 0
p1,1 p2,1 · · · pN,1 0 0 0 0
p1,2 p2,2 · · · pN,2 0 0 0 0
p1,3 p2,3 · · · pN,3 0 0 0 0


︸ ︷︷ ︸

HRBF



λ1
λ2
...
λN
c0
 c1
c2
c3


=



φ1
φ2
...
φN
0
 0
0
0



This is a symmetric positive definite system and will always have a unique solution.
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Field Reconstruction Problems
Typical for 2D FVM on a triangle mesh

• Normal velocities v = n · u are at face centers (edge midpoints in 2D)
• Pressure values are at cell centers (triangle circumcenters in 2D)

Typical Problems:
• We want to know the full velocity vector at ith vertex
• We want to know the pressure gradient at the ith vertex

Solution:
• Use moving least squares on the neighborhood of ith vertex

The position of the ith vertex will be given by xi
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Vertex Neighborhood 2D Example

Observe ith vertex has N cell (triangles) neighbors and N face (edges) neighbors.
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Vertex Pressure Gradients
• Use either fRBF, fLS, or fMLS to interpolate p(xi) = f (xi)

• Take the analytical derivative of fRBF, fLS, or fMLS to get the pressure gradient

∇p(xi)
T =

∂f
∂x

∣∣∣∣
x=xi
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Normal velocities at face
centers to full velocities
at vertices
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Vertex Velocity Field Reconstruction
Assume that the velocity field is sufficiently linear

u(x) ≡ fMLS(x) = b(x)Tc = c0 +

D∑
j=1

xjcj

where c0,c1, ..cD ∈ RD are coefficients and we have the constraints

n1 · u(p1) = v1
...

nN · u(pN) = vN

where pj are the edge midpoints and vj the corresponding normal velocity at pj
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Reverse Thinking
Imagine we know the full velocities at the edges u1, . . ., un, then linear basis functions
implies 1 x1 y1

...
...

1 xN yN


︸ ︷︷ ︸

B

c0,x
c1,x
c2,x


︸ ︷︷ ︸

cx

=

u1,x...
uN,x


︸ ︷︷ ︸

Vx

and

1 x1 y1
...

...
1 xN yN


︸ ︷︷ ︸

B

c0,y
c1,y
c2,y


︸ ︷︷ ︸

cy

=

u1,y...
uN,y


︸ ︷︷ ︸

Vy

where pi = (xi , yi)
T . We have omitted the weight W for readability.
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Projecting onto Normals
Or more compactly [

B 0

0 B

] [
cx
cy

]
︸ ︷︷ ︸
c

=

[
Vx
Vy

]
︸ ︷︷ ︸
V

We do not know the ui ’s stored in the V-vectors. Instead we know the vi = ni · ui ’s. So we
have to retry the problem setup using the projection of velocities onto normals instead.
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Projecting onto Normals
To write up the projected velocities we define the diagonal matrices

Nx =

n1,x . . . 0
... . . . ...
0 . . . nN,x

 and Ny =

n1,y . . . 0
... . . . ...
0 . . . nN,y


Then we may now write

[
NxB NyB

]︸ ︷︷ ︸
B′

[
cx
cy

]
︸ ︷︷ ︸
c

=
[
NxVx + NyVy

]︸ ︷︷ ︸
V′
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Vertex Velocity Field Reconstruction
For D = 2 and pi = (xi , yi)

T we write

B′ =

n
T
1 x1nT

1 y1nT
1

...
...

nT
N xNn

T
N yNn

T
N

 , V′ =

v1
...

vN

 , and c =

c0c1
c2

 ,
then

B′ c = V′

This is a well-known form and we can extend it to the moving least squares formalism

W(x)B′ c(x) =W(x)′

Once we know cj ’s we can compute u(xi).
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Normal velocities at face
centers to full velocities
at cell centers
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Cell Center Velocity Field (1/2)

Assume constant cell velocity u(x) = c0 for a triangle i , j and k then

nT
i u = vi

nT
j u = vj

nT
k u = vk

where n’s are outward unit normals.
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Cell Center Velocity Field (2/2)

Now

B =

nT
i
nT

j
nT

k

 , V =

vi
vj
vk

 , andc = c0

Then we solve
Bc =

This is just the least squares method.
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Full velocities at cell
centers to full velocity at
vertices
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Some Convex Polytope Terminology

• A convex polytope P in RD is the convex hull of N affinely independent points pi
where N > D.

• The polytope is bounded by a set of (D − 1) dimensional faces with unit outward
normals na where a is the index of a face.

• Let Ni be the face index set of the ith vertex such that if a ∈ Ni then i ∈ a.
• If |Ni | = D we say ith is a simple vertex
• If all vertices of the polytope is simple then we say we have a simple polytope
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Observations
• All 2D convex polytopes are simple
• A tetrahedron is a simple polytope
• A square pyramid is not a simple polytope
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Weight Function Definition (1/2)

We define the weight function

wi(x) =
vol(Ni)

Πa∈Ni (n
T
a (pi − x))

where vol(Ni) is the “volume” spanned by the face normals of the faces in Ni .
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Weight Function Definition (2/2)

In 2D if Ni = {a, b} then

vol(Ni) = det

([
nT

a
nT

b

])
In 3D if Ni = {a, b, c} then

vol(Ni) = det

nT
a
nT

b
nT

c
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General Barycentric Coordinate Definition
The barycentric coordinate is defined as

ωi(x) =
wi(x)∑N

j=1 wj(x)

For non-simple vertices
• Infinitesimal perturbation faces in Ni apart (splitting of vertex i)
• Continue to perturbation until all split vertices are simple
• Compute barycentric coordinates of each split vertex (which is simple) and add up the

results
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Primary Delaunay Mesh and Dual Circumcenter Voronoi Cell

Observations
• The dual cells are convex
• The dual cells are non-self-intersecting
• The dual edges are orthogonal to primal

edges

Taken from Batty and Xenos et. al. 2010
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Voronoi Barycentric Coordinate Simplification
Trick:

• Want to rewrite the weight function so we do not have to explicitly work with the dual
Voronoi mesh but can use the primary Delaunay mesh

Observations for Voronoi cell of primary vertex ith

• The Voronoi cell center vertex is shared by the one-ring neighborhood of primary
triangles/tetrahedra Vi ≡ {a, b, c, . . .}

• The Voronoi cell is always convex (and a simple polytope)
• The corners of the Voronoi cell are the triangle/tetrahedron circumcenters pa, pb , pc ,
. . .
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Simplification in 2D

We will
• interpolate over the Voronoi cell of the

ith vertex
• simplify the weight function of the ath

corner point pa
• assume ath triangle has vertices i , j and

k

Our notation
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Simplification in 2D
Due to the orthogonality of primary and dual edges, we have

vol(Na) = 2
Aa
lki lji

where
• Aa is the area of the ath triangle
• lki is the length of the edge from i to k and similar for lji

We have Na ≡ {j, k}

Πb∈{j,k}
(
nT

b (pa − x)
)
= Πb∈{j,k}

(xb − xi)
T

lbi
(pa − x)
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Simplification in 2D
Putting it together we have

wa(x) =
2Aa

Πb∈{j,k} (xb − xi)
T (pa − x)
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3D Voronoi Barycentric Coordinate Definition
Repeating the steps in 3D one finds

wa(x) =
6Va

Πb∈{j,k,m} (xb − xi)
T (pa − x)

where
• Va is the volume of the tetrahedron associated with corner point a
• The corner point pa is the circumcenter of the ath tetrahedron
• The ath tetrahedron has nodes i , j, k, and m
• The ith vertex is the Voronoi cell center
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Further Reading

• Greg Turk and James F. O’Brien: Shape Transformation Using Variational Implicit
Functions, Siggraph 1999.

• Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk: Interpolating and
Approximating Implicit Surfaces from Polygon Soup, Siggraph 2004.

• Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner: Animating Gases with
Hybrid Meshes, Siggraph 2005

• Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien:
Fluid Animation with Dynamic Meshes, Siggraph 2006.

• Joe Warren, Scott Schaefer, Anil N. Hirani, and Mathieu Desbrun: Barycentric
Coordinates for Convex Sets, (unpublished manuscript?) 2005
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Assignment
Recall the method of least squares from Page 3 to Page 7.
• What are the dimensions of B?
• Under what conditions are the system Bc = V over/under constrained?
• What condition must B fulfill for the pseudo inverse to work? (Hint consider rank)
• What is the gradient of fLS(x)? (Hint: use analytical differentiation)

U n i v e r s i t y o f C o p e n h a g e n Field Reconstruction 20–04–2024 39U n i v e r s i t y o f C o p e n h a g e n Field Reconstruction 20–04–2024 39



Assignment
Recall the moving least squares method on Pages 8 to 10.
• Define the error as ε =W(x)Bc−W(x)V, use this to define the unconstrained

minimizer ψMLS and show the connection to optimization problems.
• What is the dimensions of HMLS?
• Under what conditions are HMLS non-singular?
• What is the gradient of fMLS(x)? (Hint: use analytical differentiation)
• Make a sampling of the function φ(x) ≡ (x1 + x2)n at some 100 uniform random

points pi ∈ R2 inside the box [0..1]× [0..1]. Compare the accuracy of using least
squares fLS and moving least squares fMLS at the same 10 random locations inside the
box. Try for different values of n = 1, 2, 3, . . ..

• For what values of ε does moving least squares work best? (Hint: use ψMLS to
measure the overall error, can you explain why you should use this?)
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Assignment
Consider the augmented Radial basis function from Pages 11-13.
• Discuss the role of the extra orthogonality constraints.
• What is the dimensions of the HRBF?
• What is the gradient of fRBF(x)? (Hint: use analytical differentiation)
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Assignment
Consider the velocity reconstruction from Page 22. Assume we have a 2D case and that all
points pi ∈ R2 for i = 1..n and n ≥ 6 is such that
• B has full column rank

Now Consider what “obvious” conditions one must require of ni such that B′ does not lose
full column rank.
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Assignment

• Create a 2D triangle mesh. Let the total number of vertices be given by K
• Initialize a ground truth full velocity field at the vertices. Let m = 1

K
∑K

k=1 xk then
uk = x̂k −m. The hat operation is defined as ̂(x1, x2)T = (−x2, x1)T (Hint: Consider
if this velocity field is a linear mapping or not?).

• Use the ground truth velocity field to compute normal velocities at face centers. (Hint
if vertex i and j are both incident to the edge a then va = nT

a (ui + uj) /2)
• From the normal velocities reconstruct a full velocity field at the vertices.
• Compare the reconstructed velocity field against the ground truth velocity field.
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Assignment

• Extend the 2D triangle example from Page 43 to reconstruct cell center (circumcenter)
velocities

• Compare the reconstructed cell center velocities with the ground truth vertex velocity
field, are the velocities meaningful? (Hint, remember you have a closed-form solution
for the ground truth velocity at the cell centers)

• Consider how good the cell-centered reconstructed velocity field is when the normal
velocity face field is not divergence-free with respect to the cells.
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Assignment
Recall the formula on Page 36
• Create a Delaunay mesh of hexagon shape, let corner points be xj ,xk ,. . ., xp and

center point be xi .
• Assign ground truth values φa to the circumcenters of triangles

• Try a constant φa = 1 field
• Try a linear φa = pa,1 + pa,2 field

• Interpolate the ground truth fields on the spiral points

sn =
r
n

[
cos(∆θn)
sin(∆θn)

]
for n = 1 to N

where r =‖ pa+pb
2 − xi ‖ and ∆θ = 2π

N and N = 50.
• Discuss your interpolation results.
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Assignment

• (Advanced) Prove the simplification of the weight function for the 3D case from Page
37

U n i v e r s i t y o f C o p e n h a g e n Field Reconstruction 20–04–2024 46U n i v e r s i t y o f C o p e n h a g e n Field Reconstruction 20–04–2024 46


