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The Finite Volume Method (FVM)

• FVM is a method for discretizing PDEs into a system of equations. Just like the FDM
or FEM methods treated elsewhere in these course slides.

• FVM is different in how it works. It has a more geometric flavor to it. One simply
takes the “equations” and cuts the integral of these into geometric sub-pieces.

• Once the sub-integrals are obtained one reworks the integral version of the equations
using various techniques. The most important is the application of the
Gauss-Divergence theorem. This is similar to the weak-form reformulation that is
critical in the FEM approach.

• Practical FVM often borrows from FDM or FEM methods when mathematically
manipulating the equations into a discrete form. Hence, it can sometimes from a
practical viewpoint be difficult to “categorize” a method as FVM.
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The Finite Volume Method (FVM)

• FVM is different from FEM in that it takes a direct approach to getting the volume
integrals and not a variational approach (using test functions) as done in FEM. Nor is
it an approximation (using shape functions) of the central component of the FVM
method.

• Compared to the FDM method the FVM method is more easily applied to
unstructured meshes (like FEM) whereas FDM is more tricky for unstructured meshes.

• FDM is quite powerful for formal verification through analyzing the Taylor remainder
terms. This is not so obviously done for the FVM method. In our opinion, FVM
appears to be more an art form when deciding volume types and mesh layout,
sub-techniques in discretization.

• In these slides we work our way through a portfolio of such techniques by going over
examples and study group problems.
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The General Recipe of FVM
One often works with FVM in the following way

Step 0 Get Governing Equation and Boundary Conditions
Step 1 Pick a volume type, design a mesh layout
Step 2 Apply FVM on the chosen mesh to get a system of equations
Step 3 Verify if the obtained system of equations are “well posed”. If not go back to

step 1 and try the process again with different choices.
To our knowledge, there is no formal structured way to make decisions; this is in our
experience trial & error and knowledge/experience-based approach.
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Verification Techniques
There are some typical methods one can apply to verify if the discretization worked out.

• Analyze Numerical Traits:
• Fill-pattern,
• Eigenvalues,
• Spectral radius of any resulting matrices.

These often reflect symmetries and properties of the original equations, also these
reflect if the discrete equations can be numerically solved at all.
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Verification Techniques
Ground Truth:
• Setup instances of your problem with known solutions.

• For physical problems one can often try and simulate “equilibrium” states of the system.
If a solver can not “stay” in equilibrium then something is wrong.

• Testing reflections of the problem setup, like flipping the x-axis or so can be a good
technique to test if FVM works (when symmetry is expected).

• Often one solves for numerical solutions of balance/conservation equations. Hence, it is a
good idea to verify if the discrete quantities are “conserved” too. This can be used to
analyze numerical dissipation.
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Verification Techniques
Convergence Studies:
• Analyze what happens when mesh-elements and time-step sizes are reduced. Solutions

should not change too much when increasing spatial-temporal resolution.
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FVM Overview of Ideas and Techniques
In the rest of these slides, we will now introduce the ideas, concepts, and ideas of using
FVM.
• We start by defining a toy problem that we will use to illustrate the mathematical

concepts and techniques of FVM.
• We walk through the techniques one by one, starting with discrete conservation, then

the Gauss-Divergence theorem, and so on. These are all done on some “abstract”
notion of a control volume V with surface S.

• When we have an idea of the mathematical techniques used in FVM then we will
define specific concrete examples of control volumes.

• Armed with knowledge of mesh layout and FVM math steps we set out to work out a
concrete example: the Navier-Stokes equations.
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A Toy Example
A toy PDE example, given the known vector function f(u), and a scalar function g(u), and
the equation

∂g(u)
∂t +∇ · f(u) = 0

We wish to find an u-solution, t can be viewed as time. One may think of u as some
velocity field. It is not important what this equation models, for now, it is simply a
mathematical problem to study.

This problem is only for educational purposes. Imagine the toy problem describes some
balance or conservation law. We call this the “governing” equation as it describes the
“dynamics” of our whole domain.
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Start with putting PDE into Integral Form
Integrate PDEs over the arbitrary but fixed volume V with surface S

∂g(u)
∂t +∇ · f(u) = 0∫

V

(
∂g(u)
∂t +∇ · f(u)

)
dV =

∫
V
0dV = 0∫

V

∂g(u)
∂t dV = −

∫
V
∇ · f(u)dV

Using Gauss-Divergence theorem
∫

V ∇ · f(u)dV =
∫

S f(u) · ndS,∫
V

∂g(u)
∂t dV = −

∫
S
f(u) · ndS.
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The “global” volume
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Split into “local” sub volumes
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Local and Global Conservation Properties of FVM
If
• Va and Vb shares common boundary Sc
• The boundary of Va be Sa ∪ Sc
• The boundary of Vb be Sb ∪ Sc

Write integral forms over the sub-volumes and add them up∫
Va

∂g(u)
∂t dV = −

(∫
sa

f(u) · nadS +

∫
sc

f(u) · ncdS
)

∫
Vb

∂g(u)
∂t dV = −

(∫
sb

f(u) · nbdS +

∫
sc

f(u) · (−nc) dS
)

Integrals of the common boundary cancel.
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Conservation (Continued)

We have on the left-hand side∫
Va∪Vb

∂g(u)
∂t dV =

∫
Va

∂g(u)
∂t dV +

∫
Vb

∂g(u)
∂t dV

and on the right-hand side after the substitution of the equation from previous slide∫
Va∪Vb

∂g(u)
∂t dV = −

∫
sa

f(u) · nadS −
∫

sb

f(u) · nbdS

= −
∫

sa∪sb

f(u) · ndS,

where Sa ∪ Sb is the boundary of Va ∪ Vb .
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Insight on Conservation

The governing equation holds both for individual smaller volumes but also for the larger
global volume

This means conservation is guaranteed by design on both the local scale (individual
volumes) and global scale (the large volume).
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Typical Traits of the Trade
We will now study typical discretization approaches used when working with FVM

• Use Gauss-Divergence theorem to change volume integrals into surface integrals
• Exploit piecewise continuous integrals
• Pull time-derivatives outside of integrals
• Apply numerical integration to solve integrals and finite-difference methods to deal

with time-derivatives
This is an ordered list of steps to apply.
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The Gauss Divergence Theorem
Used to rewrite volume integrals into surface integrals. It takes the generic form,∫

v
∇ · FdV =

∫
S
F · ndS,

where F is any vector field, V is a closed connected set, and S is the boundary of V having
n as the outward unit-normal. There is a physical interpretation of this.
• Right-hand side gives the flux of F through the surface S. That is how much F

transports into our V volume.
• The left-hand side tells how much of F is removed or added inside the volume V .
• Hence, left-side and right-aside express a balance law saying that the change of F

inside the volume must equal the amount of F transported through the boundary
surface S of V .
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Exploit Piecewise Continuous Integral
After having applied the Gauss-Divergence theorem to our Toy problem, We have,∫

V

∂g(u)
∂t dV = −

∫
S
f(u) · ndS.

For the sake of example let us now assume,
• Boundary S is piece-wise continuous

The consequence is that we replace the right-hand-side with summation over the
continuous pieces to obtain,∫

V

∂

∂t g(u)dV = −
∑

e

∫
se

f(u) · ndS.
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Using the Leibniz’s Rule for Differentiation under the Integral Sign
After having exploited the piecewise continuous boundary surface to rewrite into a
summation of surface integrals, We have,∫

V

∂

∂t g(u)dV = −
∑

e

∫
se

f(u) · ndS.

Again for the sake of example, we will assume V is independent of time t,
• This allows us to exchange the integration and differentiation on the left-hand-side

This is often the case as one writes up the initial volume integrals using the reference
coordinate space or material coordinate space of the problem. Then

∂

∂t

∫
V

g(u)dV = −
∑

e

∫
se

f(u) · ndS.
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The Midpoint Approximation Rule
We have

∂

∂t

∫
V

g(u)dV = −
∑

e

∫
se

f(u) · ndS.

If
• The outward unit normal n is constant along each Se part

Then when we use the midpoint approximation rule we obtain,

∂

∂t
[
g(u)

]
c V = −

∑
e

[
f(u)

]
e · ne le ,

where le is the area of the Se surface. The bracket and sub-script notation refer to the term
being evaluated at the midpoint of the subscripted entity.
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Some Remarks
•
[
g(u)

]
c interpreted as the “volume” mean value of g(u) stored at the volume center

denoted by the label, c, similar meaning applies to
[
g(u)

]
e , the value at surface

midpoint with label e.
• Usually [

g(u)
]

c = g(
[
u
]

c)

Higher order approximations (computation time vs. accuracy tradeoffs)
• Midpoint rule replaced with any kind of Riemann Sum, Gaussian Quadrature,

Simpsons Rule etc..
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Applying Finite Differences
Apply finite difference on the left-hand side

V
∆t

([
g(u(t +∆t))

]
c −

[
g(u(t))

]
c

)
= −

∑
e

[
f(u(t))

]
e · ne le .

The final discrete version of the original integral form∫
V

∂g(u)
∂t dV = −

∫
S
f(u) · ndS.

The discrete form can often be written compactly as

Au = b

In practice, matrices are rarely assembled but rather kept implicit.
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Are there more steps?
So far we covered the “core” discretization approaches. There is more to be said on these
matters. For instance how does one compute

[
u
]

c or
[
u
]

e and similar terms. There are two
things to consider in dealing with this
• The mesh layout - at what location in the mesh (vertices, edges, or volumes) do we

store/associate the discrete values of u?
• What type of control volume is used for an unknown field? Note, that it is not

uncommon to use more than one type of control volume - one for each unknown field
being solved for.

Sometimes it is possible to make convenient design choices. Other times one is confronted
with not having a needed value stored at a given location.
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The Mesh Layout
There is no right and wrong here, it all depends on the “problem” being solved. Often one
will see

• Scalar quantities (like pressure, mass density, viscosity, temperature etc.) are often
stored at volume (also called cell) centers.

• Vector quantifies (like velocity, force) are often stored at vertices
• Flux terms (like normal components of vectors etc.) are often stored on edges.

A mesh layout like the above is referred to as a staggered mesh. If all quantities were stored
at say vertices one would term it a collocated grid.
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Different Control Volume Types
A few examples of control volumes for staggered grid types

The centroid dual control volume and the median dual control volume.
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Dealing with the further steps?
We will now use the incompressible Navier Stokes equations as a a concrete more complex
example for showing
• How to apply upwind FDM schemes
• How to use shape functions (FEM techniques) for estimating derivatives at sample

positions
• How to linearize non-linear terms (like advection).
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Our Discretization Example
Our choices
• Incompressible Navier Stoke equations
• Unstructured mesh – Triangle mesh
• Staggered grid – Scalar values at triangle centers – Vector values at vertices
• Centroid dual control volume for Navier Stokes equation and Triangle control volume

for incompressibility constraint equation.
Assumptions

• Regular mesh – close to equilateral triangles – all angles close to 60 ◦
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The Integral Form of Navier Stokes Equations
Newtonian Incompressible Fluids for control volume V with boundary S∫

S
ρu · ndS = 0

∂

∂t

∫
V
ρudV +

∫
S
ρu (u · n) dS =

∫
S
TndS −

∫
S
(pI)ndS +

∫
V
ρbdV

where T is the shear strain rate tensor and I is the identity tensor.

(Hint: You can read about Newtonian fluids in slide deck 7, note that we made the
notation change in the current slide deck of of using the symbol T instead of D.)
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The Discrete Volume Conservation
We use triangle control volumes storing ρ at the triangle centers.∫

Sc

ρu · ndS︸ ︷︷ ︸
≈
∑

e∈Sc Me

= 0,

∑
e∈Sc

Me = 0.

where Me is the discrete mass flux.
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The Discrete Navier Stokes equations
We use a vertex-centered centroid dual-control volume

∂

∂t

∫
Vc

ρudV︸ ︷︷ ︸
≈Uc

+

∫
Γc

ρu (u · n) dS︸ ︷︷ ︸
≈
∑

e∈Γc Ae

=

∫
Γc

TndS︸ ︷︷ ︸
≈
∑

e∈Γc De

−
∫
Γc

(pI)ndS︸ ︷︷ ︸
≈
∑

e∈Γc Pe

+

∫
Vc

ρbdV︸ ︷︷ ︸
≈Bc

Uc +
∑
e∈Γc

Ae =
∑
e∈Γc

(De + Pe) + Bc

Notice the two equations in our problem use different kinds of control volumes.
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The Mass Flux Term (1/2)

We have the triangle control volume c where e is the edge from vertex node i to node j.

By our construction, we have defined a
discrete flux term,

Me ≡ ρeue · ne le

We will adopt averaging to numerically
approximate the last terms,

ue =≡ 1

2
(ui + uj)

ρe ≡ 1

2
(ρc + ρd)
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The Mass Flux Term (2/2)

We have the triangle control volume c where e is the edge from vertex node i to node j.

Another option is to apply an upwind ap-
proximation instead of averaging,

ρe ≡

{
ρc ;ue · ne ≥ 0

ρd ;ue · ne < 0

where ne is outward unit normal and le is
edge length. This can be an advantage
when dealing with transport type of prob-
lems as averaging tends to add too much
numerical dissipation in such cases.
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The Advection Term (1/2)

We will now use Picard linearization to deal with the nonlinear dependence in u, notice the
fixed point iteration index k

Hence, by construction, we now have the discrete ad-
vection term

Ak+1
e ≡ uk+1

e (ρk
eu

k
e · ne)le

We apply the final numerical approximations by using
averaging, Hence,

uc ≡ 1

3
(ui + uj + uk) ,ud ≡ 1

3
(ui + uk + um)

ue ≡ 1

2
(uc + ud) , ρe ≡ 1

2
(ρc + ρd)
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The Advection Term (2/2)

A simpler scheme may be adopted if we assume the
edge going from i to k is orthogonal to the edge from
c to d and intersects at the mid-points,

ue ≡ 1

2
(ui + uk)

ρe ≡ 1

2
(ρc + ρd)

The alternative upwind scheme would then apply the
rule

uk+1
e ≡

{
uk+1

i ;uk
e · ne ≥ 0

uk+1
j ;uk

e · ne < 0

Remember our 60 ◦ mesh as-
sumption!
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The Pressure Term

By construction, we defined the discrete
pressure term to be

Pe = pene le

Next, we apply averaging as the final nu-
merical approximation,

pe =
1

2
(pc + pd)

There are no velocity-term so it does not
make sense to apply any upwind approxi-
mations here.

U n i v e r s i t y o f C o p e n h a g e n Finite Volume Methods 20–04–2024 35U n i v e r s i t y o f C o p e n h a g e n Finite Volume Methods 20–04–2024 35



The Diffusion Term (1/2)

By construction, we have defined the discrete diffusion term to be

De = Tene le
where the stress tensor is defined as follows

Te,ij = µ

(
∂ue,i
∂xj

+
∂ue,j
∂xi

)
We need a numerical approximation for the ∂ue

∂x
term,

Observe that ue,i means the ith component of u at location e. Similar xi means the ith
component of x and not the x-value at vertex i .
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The Diffusion Term (2/2)

To numerically approximate ∂ue
∂xi

we will use the idea of having a linear FEM line segment
going from c to d . Taking the derivative of the interpolation of u with linear shape
function yields,

∂ue
∂xi

=
∂

∂xi
(tud + (1− t)uc)

=

(
∂

∂t (tud + (1− t)uc)
∂t
∂xi

)
=

ud − uc
xd,i − xc,i

Observe that xd,i means the ith component of x at location d
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The Magnetostatic Problem (1/4)

Let us introduce a new PDE problem that we can use as a case study for learning about the
FVM method. We will start with writing up the Maxwell Equations in general differential
form

∇ · E =
ρ

ε0
∇ · B = 0

∇× E = −∂B

∂t

∇× B = µ0

(
J− ε0

∂E

∂t

)
Next, we will simplify these using facts about magnetostatics.
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The Magnetostatic Problem (2/4)

In the magnetostatic case, we have no currents and no charges, no motion, and hence all
time derivatives are zero. Using these facts Maxwell’s equations simplify to the following
form,

∇ · B = 0

∇× H = 0

Notice we have no E field either as there is no motion of the magnetic flux nor any charges.
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The Magnetostatic Problem (3/4)

It is known that Magnetization is explicitly induced by the relation

B = µ0 (M+ H)

The equation ∇× H = 0 has the general solution H = −∇φ where φ is a scalar potential
field. (Self Study: try and prove this). Now B = µ0 (M+ H) becomes

B = µ0 (M−∇φ)
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The Magnetostatic Problem (4/4)

By substitution of B = µ0 (M−∇φ) into our simplified version of the Maxwell Equation
we obtain,

∇ · B = µ0 (∇ ·M−∇ · ∇φ) = 0

Rearranging the equation and cleaning up we get

∇ · ∇φ = ∇ ·M

This is a Poisson equation to solve for φ. This is the governing equation of the
Magnetostatic problem. We will work with this problem is the Assignments.
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Facts about eigenvalues of ∇2 (1/5)

It will be instructive to study the Poisson equation type from a little mathematical angle. In
particular learning about its eigenvalues will give us insights about what to expect later on
when we have to solve our discrete system of equations that we obtain with the FVM
method.

Given the eigenvalue problem with eigenvalue λ and eigenvalue function v

−∇2v = λ v

We multiply by v and take the area integral,∫
A
λv2dA = λ

∫
A

v2dA = −
∫

A
v
(
∇2v

)
dA
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Facts about eigenvalues of ∇2 (2/5)

Recall product rule (f g)′ = f ′ g + f g ′ giving integration by parts∫
f g ′dx =

∫
(f g)′dx −

∫
f ′ gdx

Recall ∇2v =
∑

i
∂2v
∂x2

i
, Letting f ≡ v and g ′ ≡ ∂2v

∂x2
i

then substitution into,∫
A
λv2dA = λ

∫
A

v2dA = −
∫

A
v
(
∇2v

)
dA

Give us

λ

∫
A

v2dA = −
∫

A
v
(
∇2v

)
dA =

∫
A
∇vT∇v dA −

∫
A

v (∇ · v) dA
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Facts about eigenvalues of ∇2 (3/5)

So

λ

∫
A

v2dA =

∫
A
∇vT∇v dA −

∫
A

v (∇ · v) dA

Gauss divergence theorem gives

λ

∫
A

v2dA =

∫
A
∇vT∇v dA −

∫
S

v (∇v · n) dS︸ ︷︷ ︸
≡0

The surface integral becomes zero due to our Neumann boundary conditions

λ

∫
A

v2dA =

∫
A
∇vT∇v dA
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Facts about eigenvalues of ∇2 (4/5)

So we now have

λ

∫
A

v2dA =

∫
A
∇vT∇v dA

We now observe
• If v is constant on A then ∇v = 0 and we must have λ = 0

• If v is varying on A then ∇v 6= 0 and λ > 0

From this, we conclude
• All λ ≥ 0 for −∇2 or λ ≤ 0 for ∇2 (Observe the sign flip in ∇2).
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Facts about eigenvalues of ∇2 (5/5)

Assume u is a particular solution for ∇2u = b. Let us use a simple affine transform
w ≡ a u + c where a, b ∈ R. We want to know for what values a and b that w also will be
a solution

∇2w = b
∇2 (a u + c) = b

a ∇2u +∇2c = b
a ∇2u = b

We observe that we must have a = 1, but c can be any value. Hence, we have a
one-dimensional family of general solution w = u + c. We expect at least one
zero-eigenvalue.
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Problem with Discontinuous Integrands (1/6)

Consider a term such as ∇ ·M(x) as seen in the magnetostatic case study. Its volume
integral counterpart being ∫

A
∇ ·M(x)︸ ︷︷ ︸

≡f (x)

dA

By the first fundamental theorem of calculus, we require the integrated f (x) to be a
continuous real-valued function. For the sake of serving as a learning example, we now
define M in such a way that it is 0 outside a unit disk and constant inside,

M ≡

{
0 if ‖ x ‖≤ 1

(0,−1)T if ‖ x ‖> 1

U n i v e r s i t y o f C o p e n h a g e n Finite Volume Methods 20–04–2024 47U n i v e r s i t y o f C o p e n h a g e n Finite Volume Methods 20–04–2024 47



Problem with Discontinuous Integrands (2/6)

Given this setup, we may now consider the following cases:
• If a control volume is completely outside the unit disk. Here M = 0 and f (x) is

continuous and our integral makes sense in this case.
• If the control volume is completely inside then M is constant everywhere and our

integrand is again a continuous function.
• Finally, if the control volume partially overlaps the unit disk. Then M jumps from one

value inside the unit circle to another value outside the unit disk. Hence the integrated
is discontinuous and the integral can not be solved.

Let us now study how to solve such a challenge.
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Problem with Discontinuous Integrands (3/6)

One possible remedy is to split volume
integral into a summation over integrals over
piece-wise continuous domains. In our case
study that means splitting A into two
domains corresponding to the two regions of
different constant M-values.∫

A
f (x)dA =

∫
Ainside

f (x)dA+

∫
Aoutside

f (x)dA

The concept is illustrated below
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Problem with Discontinuous Integrands (4/6)

• After having split the control volume
the FVM steps can be redone, hence
Gauss-Divergence theorem leads to
surface integrals

• Notice the shared surface along O1 and
I1, here O1 is treated as outside the
unit disk and I1 as inside the unit disk.
Notice that the original control volume
edge made from O2 and I2 has been cut
into two pieces. All other edges are
unaffected by the splitting.
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Problem with Discontinuous Integrands (5/6)

Further insights
• One does not actually have to create split geometries of control volumes that partially

overlap discontinuous domains. The split can be done virtually on the fly when writing
code that evaluates the integrals. The downside is that it adds a few if-statements to
the code.

• The discontinuity in M comes from the physical magnet boundary which we have
represented implicitly in our model by defining M. Alternatively, we could have
represented the physical boundary explicitly in the mesh and made sure that the
control volumes were designed such that their boundaries were conforming to the
physical boundaries. The downside is that it can require a different mesh layout, a
re-meshing, or both.
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Problem with Discontinuous Integrands (6/6)

In summary
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Assignment
The FVM integral form is explained on Page 10.

• How does the FVM conversion to integral form compare to what you did in the FEM
method? Explain the difference in this rewriting as integral form step. (Hint: Test
function?)
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Assignment
Page 18 explains how to exploit a piecewise continuous boundary surface to rewrite our
surface integral into a summation of surface integrals.
• Why is it clever to replace the closed surface integral with a summation over piecewise

continuous integrals? (Hint: Consider using piecewise linear surfaces and solving
integrals numerically)
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Assignment
Page 19 explains how to deal with time-derivatives.
• Why is it clever to “pull” time-derivative outside the integral sign? (Hint: Think about

using Finite Difference Methods (FDM) for discretizing the time-derivative)
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Assignment
Page 22 explains how to apply numerical approximations in the FVM method.
• Discuss why we have postponed applying the numerical approximations as the last

thing to do in the very last steps of the FVM method.
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Assignment

• Use the simple f-function given by f(u) ≡ u and the simple scalar function
g(u) ≡ (ux + uy ) and derive the final discrete equation for the toy problem

V
∆t

([
g(u(t +∆t))

]
c −

[
g(u(t))

]
c

)
= −

∑
e

[
f(u(t))

]
e · ne le .

Observe the 2D unknown vector field u depends on both time and position.
• Use a regular 2D grid as your computational mesh with equal cell spacing along the x

and y axes. Store u at the center of the square cells. (Hint: Consider how to compute[
u
]

e? That is the u-values at the edge midpoints). Draw the mesh layout.
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Assignment
This is a continuation of Page 57

• You may use an alternative mesh layout where ux is stored at the vertical edge centers
and uy is stored at the horizontal edge centers. No values are stored at the volume
centers. (Hint: Consider how to compute

[
u
]

c? That is the u-values at the volume
centers). Draw the mesh layout.

• Show how your discrete toy problem from the previous slide is assembled into a linear
system Au = b (Hints: Notice the similarity to putting FDM update schemes into
matrix form or doing the FEM assembly process).

Be careful when working with your discrete equation. You now have a single integral over
each square control volume in your mesh. Label the control volumes by c.
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Assignment
The integral form of the incompressible Navier-Stokes equations is shown on Page 28.

• Derive in full detail the integral form of the incompressible Navier Stokes equations
from their corresponding differential form counterpart

∇ · ρu = 0

∂ρu

∂t + ρ (u · ∇)u = ∇ · T−∇p + ρb

U n i v e r s i t y o f C o p e n h a g e n Finite Volume Methods 20–04–2024 59U n i v e r s i t y o f C o p e n h a g e n Finite Volume Methods 20–04–2024 59



Assignment
On page 37 we used linear FEM to do numerical approximation in an FVM method.
• Work out the details of how to find the term ∂t

∂xi
. In 2D we have x0 = x and x1 = y ,

so given a point on the line p(t) = (x(t), y(t))T we have

x(t) = t xd + (1− t) xc

y(t) = t yd + (1− t) yc

In the general notation
xi(t) = t xd,i + (1− t)xc,i

(Hint: use the equation above to write t as a function of xi .
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Assignment
Use the discrete Navier-Stokes equations from Page 30 as your starting point.
• Ignore the advection term and write out the formulas for all the coefficients of the
u-terms in the discretisation

Uc =
∑
e∈Γc

(De + Pe) + Bc

Explain how this can be assembled into a linear system like Au = b. Repeat the
process for the discrete equation ∑

e∈Sc

Me = 0.
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Assignment
Recall all the discretization examples we have shown from Page 30 to 37. Consider what
happens if you encounter meshes like the ones shown here.

Explain problems and possible solutions (Hint look for cross-diffusion in text books)
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Assignment
We will work on the Magnetostatic problem as given on Page 41. Compute a solution
φ(x) : R2 7→ R where x ∈ R2. The problem is

∇2φ(x) = ∇ ·M(x) ∀x ∈ A

where A is the the closed box [−3..3]× [−1..1] and M(x) : R2 7→ R2 is defined as zero
outside the unit disk and M = (0,−1)T everywhere else. At the vertex closest to the north
pole of the unit disk boundary we have φ = 0. At every other boundary point of the box we
have D(φ,n) = ∇φTn = 0 where n is the outward unit vector normal at the boundary.
Remember that ∇2 = ∇ · ∇ and ∇ = ( ∂

∂x1 ,
∂

∂x2 )
T .

• Derive and implement a finite volume method scheme (Hint: use FDM to approximate
directional derivative ∇φ(x)Tn).
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Assignment
Continued from Page 63.
• Assume the domain can be “nicely” triangulated
• Discuss grid layout and control volume types carefully! (Hint: handed out code store φ

at vertices and use the vertex-centered centroid dual control volume)
• If you have time try and change the control volume to use a triangle control volume.

Hints: Think about how to deal properly with control volumes that are partial outside and
inside the disk where M is defined. What is the problem with FVM for such control
volumes?
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Assignment

• Write out all the details and sub-steps in showing the integration by parts re-write on
Page 43 that results in

−
∫

A
v
(
∇2v

)
dA =

∫
A
∇vT∇v dA −

∫
A

v (∇ · v) dA
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Assignment
Consider the theory covered on Pages 42-46. Assume some nonlinear transform f (u(x)) of
the particular solution u(x) to the general solution w(x) = f (u(x)).
• Prove ∇2w = b can be written as,

∂2f
∂x2

(
∂u
∂x

)2

+
∂f
∂x

∂2u
∂x2

= b

• Prove that we must have ∂u
∂x 6= 0, ∂f

∂x = 1 and ∂2f
∂x2 = 0 in order for u and w to be a

solution for ∇2(·) = b.

This proves that only the affine transform exists which can produce another particular
solution, hence we have exactly one zero-eigenvalue.
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Assignment

• In the Magnetostatic cast study problem on Pages 63-64 we may choose to ignore the
problem of M being discontinuous. What does this “solution” correspond to having
done with the magnet boundary surface? That is what is the actual shape of the
magnet that would give rise to the computed solution?
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Assignment

• Handling Embedded Surfaces, read the paper “Tetrahedral Embedded Boundary
Methods for Accurate and Flexible Adaptive Fluids Abstract” by Christopher Batty,
Stefan Xenos, and Ben Houston, Eurographics 2010.

• Based on the paper describe ways to deal with embedded surfaces in an unstructured
triangle mesh.

• Consider the magnetostatic case study again. Can any of the techniques from the
Batty et al. 2010 paper be reapplied to improve this case study problem?
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