
U n i v e r s i t y o f C o p e n h a g e n

Advanced Finite
Difference Methods
Melanie Ganz-Benjaminsen
Kenny Erleben
Department of Computer Science

Advanced Topics
In the past, we have created a nice cookbook of “rules” and techniques we can apply when
discretizing partial differential equations using finite difference methods.

We will now embark on more deep aspects and more elaborate examples. Central to these
slides is a larger more detailed example of creating a “simulator” for computing the mean
curvature flow.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 2U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 2U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 2

Mean Curvature Flow
Mean curvature flow is given by the PDE

∂φ(x, t)
∂t = −∇x ·

∇xφ(x, t)
‖ ∇xφ(x, t) ‖

where φ(x, t) : Rn × R+ 7→ R is a level set function and ∇x =
(

∂
∂x

)T . As shorthand

∂φ

∂t = −2∇ · ∇φ
‖ ∇φ ‖︸ ︷︷ ︸

≡−2κ

φ is usually initialized as a signed distance field of some shape. Hence negative values are
inside and positive values are outside.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 3U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 3

What is Mean Curvature Flow?
• What is curvature?
• PDE is penalizing bending so it tries to locally straighten out any bending

Figure: Image from https://libigl.github.io/

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 4U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 4

https://libigl.github.io/

What is Mean Curvature Flow?

• Connection to signed distance fields
• What is curvature radius?

Figure: Image by Oleg Alexandrov, Public domain,
via Wikimedia Commons

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 5U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 5

Our Strategy for Applying FDM

• Our objective now is to rewrite the term κ into a convenient form where we can apply
rules from our FDM cook-book to deal with all spatial derivatives.
• Once we have obtained a spatial discretization we will consider how to apply FDM for

the temporal derivatives.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 6U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 6

Temporal Discretization

• Using 1st order forward difference in
the time we have

∂φ

∂t ≈
φt+1 − φt

∆t
Observe we must have ∆t � 1.
• We substitute this into our governing

equation,
∂φ

∂t = −2∇ · ∇φ
t

‖ ∇φt ‖︸ ︷︷ ︸
≡−2κt

= 2κt

• The final update scheme becomes

φt+1 = φt +∆t κt

We hide the factor 2 in ∆t ← 2∆t.
• Recall that superscript denotes the time

at when a term is evaluated.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 7U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 7

Rewriting the Curvature Term
Let us return to the spatial “mean curvature” term,

κ = ∇ · ∇φ
‖ ∇φ ‖

We will rewrite this using ∇ · (av) = ∇a · v+ a∇ · v where a ∈ R and v ∈ Rn

κ = ∇φ · ∇
(

1

‖ ∇φ ‖

)
+

1

‖ ∇φ ‖
∇ · ∇φ

Using ∇ · ∇φ = ∇2φ and ‖ ∇φ ‖=
√
∇φT∇φ

κ = ∇φ · ∇
((
∇φT∇φ

)− 1
2

)
+
∇2φ

‖ ∇φ ‖

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 8U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 8

Using the Chain Rule
So

κ = ∇φ · ∇
((
∇φT∇φ

)− 1
2

)
+
∇2φ

‖ ∇φ ‖
Using the chain rule

∇
((
∇φT∇φ

)− 1
2

)
= −1

2

(
∇φT∇φ

)− 3
2 2 (∇ (∇φ))∇φ

Introducing the Hessian symbol H = (∇ (∇φ))

κ =
tr (H)
‖ ∇φ ‖

− ∇φ
TH∇φ

‖ ∇φ ‖3

where ∇2φ = tr (H)

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 9U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 9

Common Denominator
Now

κ =
tr (H)
‖ ∇φ ‖

− ∇φ
TH∇φ

‖ ∇φ ‖3

Becomes
κ =

∇φT∇φtr (H)−∇φTH∇φ
‖ ∇φ ‖3

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 10U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 10

Spatial Discretization in 2D
Given a 2D grid let φij be the value of φ at node (i , j). Using central difference
approximations

∇φi,j ≈
[
Dxφij
Dyφij

]
=

[
φi+1,j−φi−1,j

2∆x
φi,j+1−φi,j−1

2∆y

]
Trivially

‖ ∇φij ‖≈
√
(Dxφij)

2 + (Dyφij)
2︸ ︷︷ ︸

≡gij

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 11U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 11

More 2D Discretization
The Hessian

H =

[
∂2φ
∂x2

∂2φ
∂xy

∂2φ
∂xy

∂2φ
∂y2

]
≈

[
Dxxφ Dxyφ
Dxyφ Dyyφ

]
The 2nd-order central difference approximations

Dxxφij =
φi+1,j − 2φi,j + φi−1,j

∆x2

Dyyφij =
φi,j+1 − 2φi,j + φi,j−1

∆y2

Dxyφij =
φi+1,j+1 − φi+1,j−1 − φi−1,j+1 + φi−1,j−1

4∆x∆y

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 12U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 12

Putting it Together
We make the approximation of κ at node (i , j) by substitution of our FDM discretizations
into

k ≈ κ =
∇φT∇φ tr (H)−∇φT H∇φ

‖ ∇φ ‖3

and after some cleaning up we have the approximation value kij ,

kij =
(Dxφij)

2 Dyyφij + (Dyφij)
2 Dxxφij − 2DxyφijDxφijDyφij
g3

ij

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 13U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 13

Numerical Considerations
Looking at kij we observe
• kij could become unrealistic large or small if gij → 0

• If gij → 0 then we may have a division by zero
• If φ is a signed distance field then gij ≈ 1 almost everywhere (at least sufficiently close

to nodes where φij = 0)

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 14U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 14

Numerical Remedies (1/2)

• To avoid division by zero we redefine our discretization as

kij =
(· · ·)

g3
ij + ε

where the user specified constant ε� 1 is a threshold value of the same order as the
numerical precision
• Alternatively if φ is a signed distance field we modify gij

gij ←

{
gij if gij >

1
2

1 otherwise

In case kij at node (i , j) where gij → 0 then find the closest node (k,m) of (i , j) where
gkm → 1 (is sufficiently close to 1) and replace

kij ← kkm

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 15U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 15

Numerical Remedies (2/2)

• The maximum absolute value of the mean curvature that can be represented on a
regular grid is given by the conservative bound

κmax =
1

max (∆x ,∆y)

Hence it makes sense to clamp the discrete approximation

kij ← max (−κmax ,min (kij , κmax))

This avoids the problem of kij going to infinity

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 16U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 16

Recall The Temporal Discretization
Using 1st order forward difference we have

∂φij
∂t ≈

φt+1
ij − φt

ij
∆t

The final update scheme becomes

φt+1
ij = φt

ij +∆t kt
ij

where we need ∆t � 1
2 for our finite difference approximation of the time derivative to be

justified. Exactly how should we select the value of ∆t?

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 17U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 17

Numerics can be too fast
• When we use the final scheme one may experience spurious artifacts like noise or

disintegration, for example, artifacts appearing just before a blow-up of φ. Such
artifacts are related to instability. This means that the speed of how fast φij is
changing (that is the absolute value of kij) is so large that with the time-step ∆t we
see that φij would have changed (traveled longer) more than the minimum grid size, h.
• Hence, the idea is to prevent the update scheme from using a speed of φ that is larger

than what the grid can represent, ie h
∆t . One such scheme is known as a

Courant—Friedrichs—Lewy (CFL) condition.
That is we would require,

|kij | <
h
∆t , ∀i , j

This is a necessary condition but not a sufficient one.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 18U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 18

The CFL condition
If we define kmax = maxi,j{|kij |} then we can write up a global CFL condition as

kmax <
h
∆t , ∀i , j

Let us define the CFL constant 0 < C � 1 then we can write

kmax = C h
∆t

In a 2D world, we have the grid spacings: ∆x and ∆y . Hence, we define h = min(∆x ,∆y),

∆t = C h
kmax

The value C = 1
2 is typical but often C is tuned using eye-balling.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 19U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 19

Matrix-Free Methods for Iterative Solvers (1/8)

As seen previously a finite difference approximation leads to a coefficient equation like in
this simple 1D example

ci−1 xi−1 + ci xi + ci+1 xi+1 = bi

which can be rewritten into a stencil update rule

xi ←
1

ci
bi −

ci−1

ci
xi−1 −

ci+1

ci
xi+1

In many cases ci−1 = ci+1 and ci 6= ci−1 are constants independent of i so the stencil
update rule can be implemented efficiently using a compact representation

xi ← β bi − γ xi−1 − γ xi+1

where β = 1
ci

and γ = ci−1

ci
.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 20U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 20U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 20

Matrix-Free Methods for Iterative Solvers (2/8)

Now we can outline the stencil update sub-routine as follows

f u n c t i o n x = u p d a t e _ s t e n c i l _ g a u s s _ s e i d e l (beta , gamma , b , x)
% Apply boundary c o n d i t i o n s to x . . .

f o r a l l i i n sequence do
x (i) = beta ∗b (i) − gamma∗x (i −1) − gamma∗x (i +1)

end
end

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 21U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 21U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 21

Matrix-Free Methods for Iterative Solvers (3/8)

Or if we update all nodes in parallel

f u n c t i o n y = u p d a t e _ s t e n c i l _ J a c o b i (beta , gamma , b , x)
% Apply boundary c o n d i t i o n s to x

f o r a l l i i n p a r a l l e l do
y (i) = beta ∗b (i) − gamma∗x (i −1) − gamma∗x (i +1)

end
end

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 22U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 22U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 22

Matrix-Free Methods for Iterative Solvers (4/8)

One would apply the Jacobi style sub-routine like this

f u n c t i o n x = J a c o b i _ s o l v e r (beta , gamma , b , x)
w h i l e not conve rged

y = u p d a t e _ s t e n c i l _ J a c o b i (beta , gamma , b , x)
x = y ;

end
end

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 23U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 23U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 23

Matrix-Free Methods for Iterative Solvers (5/8)

A Gauss-Seidel version would be more like

f u n c t i o n x = G a u s s _ S e i d e l _ s o l v e r (beta , gamma , b , x)
w h i l e not conve rged

x = upda t e_s t en c i l_Gau s s_Se i d e l (beta , gamma , b , x)
end

end

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 24U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 24U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 24

Matrix-Free Methods for Iterative Solvers (6/8)

Observe if we make the specific choices

b = x
β = −ci ,

γ = ci−1 or ci+1

and we compute y = update_stencil_Jacobi(-c(i) , c(i-1), x, x) then this
evaluates to

y = Ax

Furthermore, the Jacobi scheme is a naive parallel so it will be efficient.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 25U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 25U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 25

Matrix-Free Methods for Iterative Solvers (7/8)

Let us define the linear operator

A(x) = @upda t e_s t enc i l_Jacob i (−c (i) , c (i −1) ,x , x)

This opens up the possibility of using iterative solvers that have Ax matrix-vector
operations as their building blocks.

This is smart because we can now compute Ax without assembling A and we can use this
as a subroutine in more complex iterative solvers.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 26U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 26U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 26

Matrix-Free Methods for Iterative Solvers (8/8)

One such method is the conjugate gradient method. Notice that there is no need to treat
boundary conditions explicitly these are taken care of using stencil update rules on ghost
cells as indicated in the pseudo code above.

f u n c t i o n c o n j u g a t e _ g r a d i e n t (A, x , b)
% . . . t h i s i s b u i l t i n Matlab . . .
end

This can be attractive as A often is symmetric and positive definite and may give a
quadratic convergence rate compared to the linear convergence rate of the Gauss-Seidel and
Jacobi style solvers.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 27U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 27U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 27

Assignment

• Discuss what boundary conditions to apply to φ for a mean curvature flow problem
from Page 3. Assume that φ is a signed distance field. (HINT: Try and sketch a signed
distance map in 1D and draw a vertical line at some imaginary boundary).
• Implement a mean curvature flow simulation as outlined from Page 13 and 17. Try to

make it as robust as possible.
• Assume that input φ is a signed distance map. Examine if this property holds

throughout a simulation.
• Analyse which of the “Numerical Remedies” from Pages 15-16 that are most important

to achieve a robust simulation.

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 28U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 28

Assignment
Advanced topics for self-study
• Explain upwind schemes (weak solutions)
• Walk through re-distance problem
• Walk through extrapolation problem
• Discuss how to deal with embedded surfaces (boundaries cutting cells)

U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 29U n i v e r s i t y o f C o p e n h a g e n Advanced Finite Difference Methods 20–04–2024 29

