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Finite Difference Methods Quick Facts

• Finite-difference methods (FDM) are numerical methods for solving differential
equations by approximating them with difference equations.
• The idea can be described as replacing derivatives by finite differences approximations.
• FDMs are thus discretization methods. Today, FDMs are one of the dominant

approaches to numerical solutions of partial differential equations (PDEs).

U n i v e r s i t y o f C o p e n h a g e n Finite Difference Methods 20–04–2024 2



Finite Difference Methods Quick Facts

• FDMs are often the first class of methods taught to students and form the foundation
of numerical methods for many research fields.
• FDMs build on Taylor series expansions to derive approximation formulas for spatial

and temporal derivatives. The remainder terms allow for a straightforward analysis of
the discretization error. This error analysis is often referred to as the “big O” or “little
o” error of a specific given method.

U n i v e r s i t y o f C o p e n h a g e n Finite Difference Methods 20–04–2024 3



Finite Difference Methods Quick Facts

• FDMs are particularly intuitive when using regular grids for representing unknowns.
Hence, this will be our starting point too. Often one simply starts from a given PDE
and replaces derivatives with finite difference approximations using a cookbook of
replacement rules.
• FDMs do extend beyond regular grids to unstructured meshes, and one may perform

both stability analysis and formal verification to put a derived method on a strong
theoretical foundation. For starters, we ignore all this and simply take a more practical
cook-book approach where we will elaborate on problems as we encounter them.
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Finite Difference Methods Quick Facts

• Although we suggest that one simply just go ahead and replace with finite difference
approximations, one should be careful. Not all combinations of “rules” work. If one is
not careful then the resulting discrete linear systems either have a non-unique solution
or no solution. We adopt a naive trial-and-error approach where we construct our
“schemes” and then investigate through experiments (verification) if they give a unique
solution.
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What are PDEs again?
A partial differential equation (PDE) is a differential equation that contains unknown
multivariable functions and their partial derivatives, e.g.

∂u(x , y)
∂x = 0

This PDE implies that the function u(x,y) is independent of x . However, the equation gives
no information on the function’s dependence on the variable y . Hence the general solution
of this equation is

u(x , y) = f (y)
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Using a Regular Grid

We have some function f (x) : R 7→ R on a
regular grid.

The sampling positions are given by
xi = ∆x · i where i is an integer index
(label) for the ith node.

We write
fi ≡ f (xi)

as a shorthand.
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Image and Signal Processing Analogy
It can be quite insightful to think of the grid nodes xi as sample points in signal or image f
because
• It gives us an idea of how to pick ∆x such that we can reconstruct f from the sample

values fi . Remember the Nyquist-Shannon sampling theorem.
• Many convolutions or filters applied to images and signals can be written as PDEs.

Hence thinking of the grid as an image gives us a strong analogy to the fields of image
and signal processing.
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Adding the First set of Rules to our Cook-book
In the following we will derive the simplest and probably most wide-spread “rules” that our
cookbook will contain. The rules are named
• Forward difference approximation
• Backward difference approximation
• Central difference approximation

Later these 3 basic rules will extend trivially to higher order derivatives and to higher
dimensions.
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Forward Finite Difference
Approximations
We wish to compute ∂f

∂x . We use a 1st order Taylor expansion

f (xi+1) = f (xi +∆x) = f (xi) +
∂fi
∂x ∆x + o(∆x)

From this we get the forward difference (FD) approximation

∂fi
∂x ≈

fi+1 − fi
∆x
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Backward Finite Difference
Approximations
We may also write the 1st order Taylor expansion as

f (xi−1) = f (xi)−
∂fi
∂x ∆x + o(∆x)

Leading to the backward difference (BD) approximation

∂fi
∂x ≈

fi − fi−1

∆x
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Central Finite Difference Approximations
Adding together the forward and backward difference approximations

∂fi
∂x ≈

fi+1 − fi
∆x

∂fi
∂x ≈

fi − fi−1

∆x

Yields
2
∂fi
∂x ≈

fi+1 − fi
∆x +

fi − fi−1

∆x
Thus, we have the central difference (CD) approximation

∂fi
∂x ≈

fi+1 − fi−1

2∆x
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Higher order Derivatives
We wish to compute ∂2f

∂x2 . Using CD approximation

∂2fi
∂x2
≈

∂
∂x fi+ 1

2
− ∂

∂x fi− 1
2

∆x

Recursively
∂2fi
∂x2
≈

fi+1−fi
∆x − fi−fi−1

∆x
∆x

Results in the central difference approximation

∂2fi
∂x2
≈ fi+1 − 2fi + fi−1

∆x2

(Note the trick – we used halfway/mid points to evaluate the finite differences!)
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Going to Higher Dimensions
Now we define f (x , y) : R2 7→ R. Our regular grid is now a 2D grid with sampled positions
xi,j = (∆xi ,∆yj)T and we write fi,j ≡ f (xi,j) = f (xi , yj). Straightforward

∂fi,j
∂y ≈

fi,j+1 − fi,j−1

2∆y

Similar for forward, backward, and higher order central difference approximations wrt. y .
What about ∂2f

∂x∂y ?

∂2fi,j
∂x∂y =

∂

∂x

(
∂fi,j
∂y

)
=

fi+1,j+1 − fi+1,j−1 − fi−1,j+1 + fi−1,j−1

4∆x∆y
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A 2D Toy Example
Let u(x , y) : R2 7→ R and let the PDE be

∇2u − κ2u = f (x , y),

where κ > 0 ∈ R and f are known. We call such a PDE that defines what happens in the
domain of a governing equation.

The term ∇2u = ∂2u
∂x2 + ∂2u

∂y2 is approximated by 2nd order CD and the term u is simply the
sample value at node (i , j).

ui+1,j − 2ui,j + ui−1,j
∆x2

+
ui,j+1 − 2ui,j + ui,j−1

∆y2
− κ2ui,j = fi,j

This new approximate form we call a finite difference approximation equation or formula.
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2D Example Continued
We may rewrite

1

∆x2︸︷︷︸
ci−1,j

ui−1,j +
1

∆y2︸︷︷︸
ci,j−1

ui,j−1 +

(
−κ2 − 2

∆x2
− 2

∆y2

)
︸ ︷︷ ︸

ci,j

ui,j

+
1

∆y2︸︷︷︸
ci,j+1

ui,j+1 +
1

∆x2︸︷︷︸
ci+1,j

ui+1,j = fi,j

Or
ui,j =

fi,j − ci−1,jui−1,j − ci,j−1ui,j−1 − ci,j+1ui,j+1 − ci+1,jui+1,j
ci,j

This is called an update formula for the unknown ui,j . c’s are called the coefficients and f
are referred to as the source term or right-hand side term.
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The Stencil
From the update formula of the unknown ui,j we discover what other unknown values it
depends on. This defines what is called a stencil and can be graphically illustrated as follows

The stencil size (ie. the number of nodes) influences the computation time. The
connectivity dictates memory access patterns.
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The Computational Domain

We need to update all nodes in our domain.

This is called a computational grid or
computational mesh.
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Update Stencil = Fixed Point Problem
The update stencils mean that ∀i , j we have a linear equation

ui,j =
fi,j − ci−1,jui−1,j − ci,j−1ui,j−1 − ci,j+1ui,j+1 − ci+1,jui+1,j

ci,j︸ ︷︷ ︸
≡g(ui,j)

ui,j = g(ui,j)

Where g(·) is an affine function. This is a fixed-point problem and one way to iterative
solve this is to make a guess u0

i,j = 0 and then compute

uk+1
i,j = g(uk

i,j)

Starting with k = 0 and continuing updating until uk
i,j does not change.
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Computing a Solution – Almost
Usually, the updates are done one-by-one

while not converged
for j=1:4

for i=1:4
u(i,j)= ( f(i,j)-c(i-1,j)u(i-1,j)-...

...-c(i+1,j)u(i+1,j) ) / c(i,j)
next i

next j
end

Here i is termed the running index.
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Trouble with the Model
The model so far presented for our Toy problem is ill-posed,
• We need boundary conditions (BCs) to tell us how u (in the example) behaves on the

boundary of the domain.
• We may also need initial conditions (in case u is time-dependent which it is not in our

example) to tell what the value of u would be for t = 0.
The missing BCs are tied to our update code works too.
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Dealing with Boundary Conditions
For most of the examples, we will only consider Dirichlet and von Neumann boundary
conditions, these are defined as follows:

u(x , y) = kd , ∀x , y ∈ Γ,

∂u
∂x = kn, ∀x , y ∈ Γ.

Here Γ is the set of points on the boundary. Now let us discuss how to modify our update
formulas to incorporate boundary conditions.

Dirichlet is also sometimes called fixed boundary conditions and Neumann is referred to as
Natural boundary conditions.
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Techniques for handling Boundary Conditions
Before we go into details we will zoom out. Overall in our opinion, there are two main
techniques for dealing with boundary conditions
• Elimination of unknown variables, that means the boundary variables are removed from

the set of unknowns, and as such are no longer present in the problem.
• Adding ghost variables to make handling of boundary conditions simpler from a coding

viewpoint.
Their implementations might take different paths. For instance, the elimination technique
can be done either by adding if-statements to the “update” loop or using a Schur
complement when working with matrices. In the following, we will explore both techniques
and various ways to implement them.
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One sided Differences on The Boundary
One remedy is to apply one-sided approximations on the boundary.
• Make sure the physical boundaries coincide with the border of the boundary cell.
• Use the boundary conditions to eliminate “unknown” terms

As an example, we apply a von Neumann boundary condition ∂u
∂x = 0. For the left border,

we have

∂2u1,j
∂x2

=

∂
∂x u1+ 1

2
,j −

∂
∂x u 1

2
,j

∆x

=

u2,j−u1,j
∆x − ∂

∂x u 1
2
,j

∆x =
u2,j − u1,j

∆x2

Since
∂u 1

2 ,j
∂x = 0. Clearly, the modified stencil now only uses “valid” nodes that exist in the

domain.
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The Ugliness of One-sided Differences on the Boundary
As we just saw when plugging boundary conditions into the finite difference approximations
of our governing equation we get a modified stencil that only uses valid domain nodes.
There are unfortunately some challenges we must overcome in order to use this approach:
• We must crunch a lot of math to derive all updated formulas for all the boundaries in

our problem.
• When implementing the update method on Page 20 we would need to use

if-statements or similar logic to determine which update formulas to use for different
types of nodes in the domain as boundary nodes would need their modified
counterparts of the governing equation.

Ghost nodes provide us with a different approach for implementing the boundary conditions
that make the coding effort somewhat simpler.
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Using Ghost Nodes/Cells

To use the idea of ghost nodes we append
extra nodes to our domain as shown here.

Doing this is sometimes called “padding”.
Now when naively running the update code
from page 20 we can evaluate any central
difference approximation in our domain
without accessing non-existing grid nodes in
the computer memory. However, how should
we update the values stored in the actual
ghost nodes?
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Setting the Ghost Nodes
Imagine once again that we have ∂u

∂x = 0 on our domain boundary.
A central difference approximation would imply

∂u 1
2
,j

∂x =
u1,j − u0,j

∆x = 0

From this, we get an update-formula for the ghost node u0,j

u0,j = u1,j

Thus, prior to evaluating update formulas on the domain, we make an initial pass over the
ghost nodes and apply update formulas to set these to respect our boundary conditions.
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It is about Solving Linear Systems
We observe that approximation formulas and their reformulated update stencils are linear
systems of equations.

It means the iterative update scheme (the fixed point approach) is an iterative solver for
solving a linear system.

Benefit: It does not need storage to formulate a matrix.
Disadvantage: It may need many iterations to converge.

Idea: If we create a matrix form of all the equations then we can apply a different
solver.

Like LU, QR or Cholesky factorizations, or even Conjugate Gradients or other types of
solvers.
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Connection to Matrix Form
We may write up all finite difference approximation formulas simultaneously for all
unknowns u(i , j)

c10u10 + c01u01 + c11u11 + c21u21 + c12u12 = f11
...

...
c43u43 + c34u34 + c44u44 + c54u54 + c45u45 = f44

Next we may concatenate all u-values into one vector u which we partition into a part of
uD that holds domain nodes and a part uG that holds ghost nodes.

Au =
[
ADD ADG

] [uD
uG

]
= f.

Here A is a matrix containing the coefficients cij and f is a concatenation of all fij terms.
We call this process a Matrix Assembly.
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Connection to Matrix Form Continued
Similarly, we may write up the update-formulas for the boundary conditions as a
simultaneous system of equations

b01u01 + b11u11 = k01
...

...
b54u54 + b44u44 = k54

To keep it general we introduced bij as symbols for the coefficients in the update formulas
and kij for the right hand side term. As before we may introduce the matrix notation

Bu =
[
BGD BGG

] [uD
uG

]
= k.
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Connection to Matrix Form Continued

For mapping the update formulas into
matrices we need to design a memory layout
that maps from a pair of 2D grid indices
(i , j) into a linear vector index k.

We simply just stack the grid rows on top of
each other.
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Connection to Matrix Form Continued

The same mapping is used to map the
coefficients of a stencil into rows of a Matrix.

The stencil of node (1, 1) maps to row 5 and
the coefficients of the stencil will be placed
appropriately into the columns of row 5.
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Connection to Matrix Form Continued
Let the grid be of M × N nodes then the coefficient ca,b from the finite difference
approximation for the (i , j) node maps into the A-matrix as

A(j N+i),(b N+a) = ca,b

Similar for the b-coefficients and the B-matrix.

Notice that ui,j maps into
u(j N+i) = ui,j

Similar to the right-hand-side vectors.
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The Final Story on Matrix Form
Discretization of the governing equations and the boundary conditions results in two
simultaneous linear systems

[
ADD ADG

] [uD
uG

]
= f,

[
BGD BGG

] [uD
uG

]
= k.

That we can write up as a single full linear system,[
ADD ADG
BGD BGG

] [
uD
uG

]
=

[
f

k

]
When we have assembled this system we can simply solve this to find our solution.
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Real Sub-Blocks or Just Index Sets?
Looking at [

ADD ADG
BGD BGG

] [
uD
uG

]
=

[
f

k

]
There are two ways to consider how to implement this.
• One may take the blocked partitioning literally, and constructing the sub-matrixes A

and B and assemble these into the the full matrix as shown above.
• Alternative one may simply consider the blocks above as index sets into a full matrix.

This is nice as it allows one to pre-allocate the full matrix and simply index it into
needed entries. Hence, the blocks are an imaginary partitioning of the full system and
the sub-block matrices do not really exist.

In implementations we often use the index approach, but when explaining the math we take
the sub-block viewpoint.
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The Schur Reduction
By doing blocked row-operations[

ADD ADG
BGD BGG

] [
uD
uG

]
=

[
f

k

]
[

ADD ADG
B−1

GGBGD I

] [
uD
uG

]
=

[
fD

B−1
GGc

]
[
ADD − ADGB

−1
GGBGD 0

B−1
GGBGD I

] [
uD
uG

]
=

[
fD − ADGB

−1
GGk

B−1
GGk

]
Observe that the first row gives,(

ADD − ADGB
−1
GGBGD

)
uD = f− ADGB

−1
GGk
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The Schur Reduction
We can use this equation to solve for uD and then substitute into the second row to
compute uG (which we do not care about),

uG = B−1
GG (k− BGDuD)

This is called the Schur method (or Schur reduction).

The Schur reduction shows that in the end, all ghost values disappear.
• In most cases one would not solve the system like this – but rather apply an iterative

or direct solver to the full system.
• But using a Schur complement can be a benefit if there are far fewer domain variables

than ghost variables, or to get a better conditioned system.
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Overview of Approaches
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A Note on Iterative Methods
Solve the linear system Ax = b using a splitting method

Ax = b

(L+ D+ U)x = b

(L+ D)xk+1 = b− Uxk

xk+1 = (L+ D)−1
(
b− Uxk

)
This is a Gauss-Seidel (GS) method. Write the ith component of the last equation

xk+1
i =

bi −
∑

j>i Aijx
k
j −

∑
j<i Aijx

k+1
j

Aii
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A Note on Iterative Methods
Observe if j > i then xk+1

j = xk
j Thus, doing in place update

xi ← xi +
bi −

∑
Aijxj

Aii
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Time Integration
Up to this point, we have mainly studied spatial derivatives. Time derivatives are special.
Often one would go with the guidelines
• Use either FD (called explicit time integration) or BD (called implicit time integration)

rules for temporal derivatives.
• Use CD for spatial derivatives for the interior of domains and FD/BD on boundaries as

appropriate.
These are merely guidelines, they are not bulletproof. In the following, we will introduce yet
a new rule to our cookbook, which is extremely useful for dealing with time integration of
advection terms.
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Semi Lagrangian Time Integration
Basic Idea:
• Convert nodes into particles
• Trace particles back in time
• Find the values in the past
• Copy the values to the present

This is often used to deal with advection terms

∂φ

∂t = − (u · ∇)φ

where φ is a scalar field and u is the associated velocity field and for now we additionally
assume an incompressible flow meaning ∇ · u = 0.

Advection describes how much φ is pushed around by u.
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Step 1: Traceback in time
Convert grid nodes to particles and follow the trajectory of the particle back in time.

Use some interpolation method to look up the value.

U n i v e r s i t y o f C o p e n h a g e n Finite Difference Methods 20–04–2024 43



Step 2: Copy forward in time
Copy the value stored at the past particle position to the current time grid node position.
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Hitting the Wall
If we trace beyond a wall then stop at the intersection point between trajectory and wall.
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Clamping - The Fast Way to handle the Wall
Clamping (meaning associated with the closest boundary point) might be faster but may
have side effects

Depends on time-step size and wall shape.
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The Math of It
From a grid viewpoint, we are sitting fixed in space and looking at φ as it moves through
space and we should think of φ as a spatially varying function φ(x, t). Thus, the full
derivative from the grid view becomes

Dφ(x, t)
Dt =

∑
i

∂φ

∂xi

∂xi
∂t +

∂φ

∂t = (u · ∇)φ+
∂φ

∂t

Now imagine instead that we take a particle viewpoint, that is we move with a particle and
can observe as we move along how the quantity φ(t) of the particle will change in time as

Dφ(t)
Dt = k .

In the particle view, we do not observe x of the particle because we are moving with it.
That is why φ now appears to only depend directly on t and not on x.
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The Math of It
This means that the particle view Dφ(t)

Dt = k is the same as the grid view Dφ(x,t)
Dt ,

Dφ(t)
Dt =

Dφ(x, t)
Dt .

That is
k = (u · ∇)φ+

∂φ

∂t
In our case k = 0 as we consider φ to be conserved. We could encounter problems with
sinks or sources that would cause k 6= 0.

The cool thing about this interchangeable viewpoint insight is that we can go with the
viewpoint that makes the numerical method easier to solve. In our case, we swap the grid
view with the particle view and solve the time integration problem with the particle view,
before finally switching back to the grid view again.
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The Implicitness of It
Having to solve

Dφ(t)
Dt = k

We may choose an implicit first-order time integration (BD in time)

φt = φt−∆t +∆tk

In the case of advection from Page 42 we have k = 0. That means we must find φt−∆t in
order to find φt .

One can think of this that we wish to trace back in time to find the imaginary particle that
will hit the location (grid node) we are currently updating.

U n i v e r s i t y o f C o p e n h a g e n Finite Difference Methods 20–04–2024 49



Tracing Back in Time
From the definition of a velocity field as the time derivative of position, we have

∂x

∂t = u

For the sake of example, we here apply a first-order backward finite difference approximation

xt − xt−∆t

∆t = u

Using this approximation equation we can find the particle position (update formula) at
t −∆t,

xt−∆t = xt −∆tu

Here xt will be the grid node position we want to know φt for.
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Advecting the Field Forward
Knowing the location of the particle in the past that will hit our current grid node, we can
now advect the φ field forward in time by doing the update φ by

φt ← φt−∆t

After the update, we simply store the new φt value at the grid node to swap back the grid
viewpoint. Our problem in this approach is that we do not know φt−∆t as xt−∆t might not
be located at a grid node.
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Advecting the Field Forward
Hence to find φt−∆t we interpolate from the enclosing grid nodes at location xt−∆t . One
important observation from doing an interpolation is that:
• Any interpolated value will be in the range of the enclosing nodal values. Never

outside the range.
Thus, we never add more “φ” to the grid nodes. Instead we always “smooth” out “φ”. We
say we numerically lose or dissipate φ.

U n i v e r s i t y o f C o p e n h a g e n Finite Difference Methods 20–04–2024 52



Expanding The Cookbook
Next, we will briefly extend our cookbook with 3 more ingredients. They are often quite
useful when working with computational fluid dynamics although they are not limited to
this application domain. The techniques are
• Fractional step method
• Pressure projection
• Staggered grids
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The Fractional Step Method
Given some PDE

∂φ(x, t)
∂t = f1(x, t, φ,∇φ, . . .) + ·+ fn(x, t, φ,∇φ, . . .)

with initial condition φ(·, t) = φt . Split into sequence of sequential subproblems – steps.
First step solve

∂φ1(x, t)
∂t = f1(x, t, φ1,∇φ1, . . .).

We use the solution φt+∆t
1 of first step as initial condition for the second step

φ2(·, t) = φt+∆t
1

∂φ2(x, t)
∂t = f2(x, t, φ2,∇φ2, . . .)

and so forth...
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The Fractional Step Method Continued
...until we use the result φn−1 as initial condition for the final step φn(·, t) = φt+∆t

n−1

∂φn(x, t)
∂t = fn(x, t, φn,∇φn, . . .)

The solution of the final step is the solution for the original PDE. φ(·, t +∆t) = φt+∆t
n
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Why does this work?
As an example consider using first order explicit time integration then we have

φt+∆t
1 = φt +∆tf t

1

φt+∆t
2 = φt+∆t

1 +∆tf t
2

...
...

φt+∆t
n = φt+∆t

n−1 +∆tf t
n

φt+∆t = φt+∆t
n

Back substitution yields

φt+∆t = φt +∆t
n∑

i=1

f t
i

But this is first order explicit time integration of the original PDE.
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Why is this clever?

• We can take one big problem and break it into several smaller problems
• We can apply a specific solution technique for each sub problem independently of the

other sub problems. Example use implicit time integration for one term but explicit
time integration for another etc..
• It makes solution technique more modular and allow us to easy change choices later

(different discretization choices)
• One major downside! It adds a sequential nature to the overall method.
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The Pressure Projection Trick
We got the PDE

ρ
∂u

∂t = −∇p

For u = (u, v)T combined with the equation

∇ · u = 0
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The Pressure Projection Trick
We do an implicit first order time integration and then we take the divergence of the result

ut+1 = ut − ∆t
ρ
∇pt+∆t

∇ · ut+1 = ∇ · ut − ∆t
ρ
∇ · ∇pt+∆t

∇2p′ = ∇ · ut

where p′ = ∆t
ρ pt+∆t . This is a Poisson equation.
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Pressure Projection – Final recipe
Step 1, compute

∇2p′ = ∇ · ut

Step 2, compute
ut+1 = ut −∇p′

That is it.
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A Short Story about a Staggered Grid
In computational fluid dynamics, it is custom to
• Store velocity components at face centers
• Store scalar values (density, pressure) at cell centers

Example

(aka. marker and cell (MAC) grid)
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Benefits of Staggered Grid

• Make it very easy to add boundary conditions like u = 0 and v = 0

• Make it easy to compute pressure gradients for u and v velocity components.
• Results in more “accurate” central difference approximations (Study group work: can

you explain why it gets more accurate?)
• Drawback – may make implementation a bit messier
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Assignment

• Show the order of error for the FD, BD, CD approximations from previous slides (Hint
find the term o(...) or O(...)) Notice that you have to rederive the CD formula
differently. Write up the 2nd order Taylor series forward and backward expansions.
Then subtract the backward Taylor expansion from the forward Taylor expansion.
Recall that by definition we write

f (∆x) ∈ o(∆xn) ⇒ lim
∆x→0

f (∆x)
∆xn = 0

For any power n.
• Based on your order analysis answer what is the benefit of the CD approximation

compared to the FD or BD approximations?
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Assignment

• Do you see any drawbacks to the CD approximation? (Hint compute FD, BD and CD
for ∂f1(xi )

∂x , ∂f2(xi )
∂x , and ∂f3(xi )

∂x shown in the figure)
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Assignment
Show in full detail that ∂2fi,j

∂x∂y =
∂2fi,j
∂y∂x holds when using finite difference approximations as

outlined/defined on Page 14.
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Assignment

• Explain why the name running index on page 20 makes sense.
• What problems can you find with the pseudo-code on slide page 20 if you actual run

the code as it is shown?
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Assignment
Use a 4-by-4 grid for the small 2D Toy example from page 15 and apply the boundary
conditions

∂u
∂x = 0

On all vertical boundaries and
∂u
∂y = 0

On all horizontal boundaries. Let f (x , y) = x + y and κ = 2. Use the ghost node approach.

• Derive update formulas for the ghost nodes
• Derive update formulas for all domain nodes
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Assignment
We will now continue the example from Page 67.
• Explain how the approximation equations from the governing equations and boundary

conditions are mapped into a matrix using index sets.
• Write a Matlab code that assembles the corresponding matrix rows for the domain

nodes.
• Write a Matlab code that assembles the corresponding matrix rows for the ghost nodes
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Assignment
Use your code solution from Page 68.
• Examine the fill pattern of the A and B matrices from the Toy example. What can you

say about them?
• Examine the eigenvalues of the full matrix system[

ADD ADG
BGD BGG

] [
uD
uG

]
=

[
fD
kG

]
Speculate whether you can solve this linear system or not.
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Assignment
Consider the 1D example of

∂2u
∂x2

= 0

Let the domain be from xa = 0 to xb = 1 (sample any n > 3 points in between), and use a
regular mesh with ∆x = 1/n and a central difference approximation.
• Draw the computational mesh
• Write the finite difference approx. the equation for the ith node
• Apply the boundary condition ∂u

∂x = 0 at xa and xb (i = 1 and i = n) and use the
ghost nodes x0 and xn+1.
• Assemble one whole matrix system. What structure does the matrix have, how many

zero-eigenvalues, and how many zero-rows? (Hint: is it singular).
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Assignment
Continue with the example from Page 70.
• Use simple geometry considerations and formulate the general solution. What is

needed to find a particular solution? (Hint: How to make the matrix non-singular).
• Discuss how one would approach an efficient matrix representation. (Hint: We often

use iterative linear system solvers and only need to know the value of Au for some
given u and not A.)
• For the specific example examine what would be the most efficient way to store the A

matrix. Exactly how many numbers in memory does one really need? (More Hints:
Write a small piece of Matlab code that uses the update formulas you have derived to
compute Au)
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Assignment

• Derive the Gauss-Seidel update formula shown on page 40 in full detail.
• Compare the Gauss-Seidel update formula to the solver pseudo code on slide 20. (Hint:

can you see a connection?)
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Assignment

• Define some φ field on a regular 2D grid (Hint: The MatLab function peaks might be
useful).
• Use the analytical velocity field u(x , y) = (y ,−x)T

• Explain in detail how to use semi-Lagrangian time integration to implement a scheme
for solving

∂φ

∂t = − (u · ∇)φ

on a regular mesh domain.
• Ideally φ should just rotate as a function of time. Implement your derived scheme and

examine if this is true. (Hint: You have to carefully define an experiment and identify
what causes φ to change).
• Change your method to use a 2nd order Runge Kutta method (RK2) for

time-integration (also known as mid-point method).
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Assignment

• Download the smoke2D code from the course web page and run it.
• Analyze the code and derive the used discretizations. Go over the fractional step

method. Derive update formulas for each step and explain how boundary conditions
are done.
• Add timers to the code and benchmark/profile the code. Analyze your profiling to find

performance bottlenecks. Explain the causes/remedies of these.
• Identify visual artifacts (like jags, noise, flickering, aliasing etc..) and explain their

causes. (HINT: make hypotheses about what you should expect for low/high values of
different parameter values)
• Discuss if the order of steps in the fractional step method has any influence on the

final simulation result. Try swapping the order in the code with your expectations.
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Assignment

• Make convergence plots of the Gauss-Seidel solver when used for pressure projection
and implicit diffusion respectively. Tune the maximum number of iterations to get the
best accuracy (for the number of flops used).
• Set up experiments that will illustrate how the accuracy of the pressure projection

solution affects the fluid simulation results. Based on your findings formulate a rule of
thumb for how much accuracy is desirable.
• Replace the Gauss-Seidel (GS) solver with a different type of solver (see PCG, GMRES,

BICG for hints). Tune parameters such that the accuracy of the solution is at least an
order of magnitude better than the one you achieved with Gauss-Seidel. How does the
visual quality of the simulation compare between GS and your new solver?
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Assignment

• Change the boundary condition implementation such that you can simulate a
cavity-driven flow by making the top of the box slide to the right. Compare your
velocity profiles and streamline plots with those from: “U. Ghia, K.N. Ghia,and C.T.
Shin,High-Re solutions for incompressible flow using the Navier-Stokes equations and a
multigrid method, Journal of Computational Physics, Volume 48, issue 3, 1982”.
• Add inflow and outflow boundary conditions (like D(uvent,n) = k where k is the rate

of in/outflow in the normal direction to the domain boundary). Use this to add vents
to your fluid flow simulation.
• Change the code such that one can make arbitrary solid wall boundaries and test your

implementation for correctness.
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Assignment

• Find the CD approximations for ∂f1(xi )
∂x , ∂f2(xi )

∂x , and ∂f3(xi )
∂x shown in the figure

How did staggering improve your results? (Hint: Compare to page 64)
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Assignment

• Change the collocated grid into a staggered grid as the one used by “Nick Foster ,
Ronald Fedkiw, Practical animation of liquids ”
(https://doi.org/10.1145/383259.383261) and “Ronald Fedkiw, Jos Stam and
Henrik Wann Jensen, Visual Simulation of Smoke ”
(https://doi.org/10.1145/383259.383260).
• Replace the semi-Lagrangian time integration method with a MacCormack method

and/or QUICK method. See “ Andrew Selle , Ronald Fedkiw , Byungmoon Kim ,
Yingjie Liu , Jarek Rossignac, An Unconditionally Stable MacCormack Method ”
(https://doi.org/10.1007/s10915-007-9166-4) and “Jeroen Molemaker ,
Jonathan M. Cohen , Sanjit Patel , Jonyong Noh, Low viscosity flow simulations for
animation ” (http://dx.doi.org/10.2312/SCA/SCA08/009-018) for details.
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