

Contact Force Problems

Why we need Complementarity Problems

Kenny Erleben Department of Computer Science

University of Copenhagen

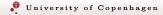
The Position Level Non-Penetrating Constraint

Consider two rigid bodies

- Let *d* me the minimum distance
- Penetration is not allowed hence $d \ge 0$
- A normal force \mathbf{f}_n prevents penetration and it is non-sticking $\mathbf{f}_n \ge 0$
- If the rigid bodies are separated d > 0 then there can be no normal force $\mathbf{f}_n = 0$ between the two bodies.
- If there is a normal force $\mathbf{f}_n > 0$ then the rigid bodies must be touching d = 0. We write

$$\mathbf{f}_n > 0 \Rightarrow \mathbf{d} = 0$$
$$\mathbf{d} > 0 \Rightarrow \mathbf{f}_n = 0$$

This is known as a complementarity condition



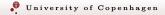
The Velocity Level Non-Penetrating Constraint

Assume we have touching contact d = 0 and let $\mathbf{u} = \frac{d}{dt}\mathbf{d}$ is the time derivative of the minimum distance vector. Let $\mathbf{u}_n = \mathbf{n} \cdot \mathbf{u}$ be the projection onto the normal direction at the point of contact.

- if the contact is about to separate then $\mathbf{u}_n > 0$
- If we have sustained contact then $\mathbf{u}_n = 0$
- If u_n > 0 then at any future time we have d > 0 due to continuity of physics, this implies f_n = 0
- If $\mathbf{f}_n > 0$ then the contact can not be separated and we must have sustained contact $\mathbf{u}_n = 0$

We write

$$\mathbf{f}_n > 0 \Rightarrow \mathbf{u}_n = 0$$
$$\mathbf{u}_n > 0 \Rightarrow \mathbf{f}_n = 0$$



The Contact Frame

Let the contact normal be \mathbf{n} and the orthogonal contact plane vector \mathbf{t} . We assume

 $\| \mathbf{n} \| = 1$ $\| \mathbf{t} \| = 1$ $\mathbf{n} \cdot \mathbf{t} = 0$

Define the contact plane velocities as

 $u_{t_1} = \mathbf{t} \cdot \mathbf{u}$ $u_{t_2} = -\mathbf{t} \cdot \mathbf{u}$

and $\mathbf{u}_n = \mathbf{n} \cdot \mathbf{u}$.

The Friction Force

• The friction force \mathbf{f}_t is given by

$$\mathbf{f}_t = \lambda_1 \mathbf{t} - \lambda_2 \mathbf{t}$$

where

$$\lambda_1 > 0 \Rightarrow \lambda_2 = 0$$
$$\lambda_2 > 0 \Rightarrow \lambda_1 = 0$$

The λ 's are the coefficients of the friction force projected onto the positive span defined by **t** and $-\mathbf{t}$.

Coulomb Friction in a 2D World

• If there is a normal force \mathbf{f}_n then the friction force \mathbf{f}_t is bounded by the cone

$$\mid \mathbf{f}_t \parallel = \lambda_1 + \lambda_2 \le \mu \mathbf{f}_n$$

where $\mu > 0$ is a positive constant known as the coefficient of friction.

- If there is sliding u_t ≠ 0 then the friction force f_t works against the sliding direction and attains it maximum possible value.
- If there is no sliding then the friction force can have any value bounded by the friction cone.

Coulomb Friction in a 2D World Continued

Let us introduce the scalar $\beta \geq 0$ then we may write

$$\lambda_1 > 0 \Rightarrow (\beta - u_{t_1}) = 0$$
$$\lambda_2 > 0 \Rightarrow (\beta - u_{t_2}) = 0$$
$$(\beta - u_{t_1}) > 0 \Rightarrow \lambda_1 = 0$$
$$(\beta - u_{t_2}) > 0 \Rightarrow \lambda_2 = 0$$

Hence

• if there is sliding (a λ is positive) then β estimates the magnitude of the sliding speed Now we combine with

$$\beta > 0 \Rightarrow (\mu \mathbf{f}_n - \lambda_1 - \lambda_2) = 0$$
$$(\mu \mathbf{f}_n - \lambda_1 - \lambda_2) > 0 \Rightarrow \beta = 0$$