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The Definition of a Simplex
A simplex is defined as the point set consisting of the convex hull of a set of affinely
independent points.
• Let {vi}n+1 denote a affinely independent point set containing n + 1 points.

Henceforth named the vertex set and its elements the vertices. The simplex, σn, is
defined as the point set,

σn ≡

{
v | v =

n+1∑
i=1

λivi ,
n+1∑
i=1

λi = 1, 0 ≤ λi ≤ 1 ∀i
}

• In three dimensional Euclidean space we can have up to four affinely independent
vertices. This implies that n = 0, 1, 2, 3 are the only possible choices in a three
dimensional space.
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Affinely Independent Point Set

• Let the points viRn for i = 1 to m be given
• Then the point set {vi}m

1 is affinely independent if the vector set {vi − v1}m
2 is a linear

independent set.
• A vector set {pj}k

1 is linear independent if and only if

0 = α1p1 + · · ·+ αkpk

when all scalar coefficients αj = 0 for all j.
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The Vertex Set Operation
Let {vi}n+1 denote a affinely independent point set containing n + 1 points and defining
the point set of the simplex, σn.

vert(σn) ≡ {vi}n+1 = {v1, v2, . . . , vn+1}

As short-hand notation we use the labeling σn ≡ {v1, v2, . . . , vn+1} as the notation that
defines the simplex.
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Simplex Dimension
The number of linear independent vertex basis vectors of the point-set of the simplex will
be denoted as the dimension of the simplex. Thus we have

dim(σn) ≡ n

for n = 0, 1, 2, 3, 4 and so on.
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The Orientation of a Simplex
The orientation of a simplex is given by the ordering of the vertex set up to an even
permutation (even number of two-element swaps)
• Thus, there exist only two classes of orientations

Example: given σ2 = {v1, v2, v3} then
• {v1, v2, v3}, {v2, v3, v1}, and {v3, v1, v2} are of same orientation
• {v2, v1, v3}, {v1, v3, v2}, and {v3, v2, v1} are of same orientation

but {v1, v2, v3} and {v2, v1, v3} are of different orientations.
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More on Orientations
• A zero-simplex (a single vertex) has no orientation
• The two different orientations are often designated by a sign, +1 or −1.
• One convention for picking an orientation is to use the determinant of the vertex basis,

sgn(σn) ≡ sgn(det(
[
(v2 − v1) (v3 − v1) · · · (vn+1 − v1)

]
))

• If we are given the orientation sgn(σ1) = sgn({v1, v2}) then the opposite orientation
is written as sgn({v2, v1})

• Or even more shorthand we use {v1, v2} = −{v2, v1}
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Examples of Notation
So we have
•

sgn({v1, v2, v3}) = sgn
(
det

([
v2 − v1 v3 − v1

]))
•

sgn({v1, v2, v3}) = sgn({v2, v3, v1} = sgn({v3, v1, v2})
•

sgn({v2, v1, v3}) = sgn({v1, v3, v2}) = sgn({v3, v2, v1})
•

sgn({v1, v2, v3}) = −sgn({v2, v1, v3})
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A Simplex Face (Sub-simplex)

A face σm of a simplex σn is a simplex spanned by the subset of vertices of {vi}n+1

vert(σm) ⊆ vert(σn)

Observe
• Any face is itself a simplex
• By definition of a face any simplex is a face of itself.

If dim(σm) < dim(σn) we call σm a proper face of σn.
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The Boundary of a Simplex
We will define the boundary, Γ, of a simplex, σ to denote the set of faces having fewer
elements in the vertex set than σ.

Γ(σn) ≡ {σm | m < n ∧ vert(σm) ⊆ vert(σn)}

Thus for σ2 = {v1,v2,v3} (a triangle), the boundary is by our definition

Γ(σ2) = {{v1,v2}, {v1,v3}, {v2,v3}, {v1}, {v2}, {v3}}

Thus, it is merely the edges and the vertices of the triangle.
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The Boundary Operator
A slightly different definition defines the boundary operator of σn to be all faces having
exactly n − 1 elements in their vertex sets.

∂(σn) ≡ {σm | m = n − 1 ∧ vert(σm) ⊆ vert(σn)}

Usually, the orientations of the faces must be handled carefully.
• The boundary operator yields a set of n + 1 simplexes ∂(σn) = {σj

m}n+1
j=1 where

σj
m = (−1)j+1{v1, . . . , v̂j , . . . , vn+1}

and v̂j means that vj is dropped.
Observe that from a “geometric point set” viewpoint ∂(σn) ≡ Γ(σn), only “topological
set-wise” ∂(σn) 6= Γ(σn).
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The Closure of a Simplex
The closure operation is the union of the simplex and its boundary. Here is a the
combinatorial notion of closure

cl(σn) ≡ σn ∪ Γ(σn)

Thus for σ2 = {v1,v2,v3} we have

cl(σn) = {{v1,v2,v3}, {v1,v2}, {v1,v3}, {v2,v3}, {v1}, {v2}, {v3}}

From a point-set viewpoint, one could just as easily have used the boundary operator ∂(σn)
in place of Γ(σn) in the above definition.
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The Closure of a Set of Simplexes
Given a set of simplexes K = {σ1, . . . , σN} the closure of K is defined as

cl(K) ≡
⋃

σk∈K

cl(σk)
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The Interior of a Simplex
We define the interior of a simplex as the point set of the simplex minus the points on the
boundary.

int(σn) ≡ cl(σn) \ Γ(σn)

• Observe that all point sets are closed. Thus the vertices of a triangle are contained in
the edges of the triangle and both the vertices and the edges of the triangle are
contained in the triangle.

Observe from a point-set viewpoint we have int(σn) = cl(σn) \ ∂(σn).
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Adjacent Simplexes
Two simplexes σi and σj are said to be adjacent if and only if

• dim(σi) = dim(σj)

• and they share a common face

σk = σi ∩ σj 6= ∅

• and the dimension of the common face is exactly one lower than the dimension of the
simplexes

dim(σk) = n − 1

where n = dim(σi) = dim(σj)

We define the boolean binary relation adj(σi , σk) to be true if and only if σi and σj are
adjacent simplexes and false otherwise.
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The Simplicial Complex
A simplicial complex is a finite collection K of simplexes and the following two properties
are always true
• Every face σk ⊂ σj of each simplex σj ∈ K is also a simplex in K
• Any intersection of two simplexes σi and σj from K is

σi ∩ σj =

{
∅
σk ∈ K
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The Star (one-ring) of a Simplex

Given σ ∈ K then the star operator is given by

star(σ) ≡ {σn|σn ∈ K ∧ vert(σ) ⊆ vert(σn)}

That is the set of all simplexes that σ is a face of.
• A top-simplex is defined as having star(σ) = σ

• The dimension of a simplicial complex is equal to the highest dimension top simplex in
the simplicial complex

The star operator is sometimes called the co-boundary operator.
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The Discrete Manifold
An n-dimensional discrete manifold is an n-dimensional simplicial complex that satisfies

• For each simplex the union of all n-dimensional incident n-simplexes forms an
n-dimensional ball

• or a half-ball if the simplex is on the boundary
Thus, each n − 1-dimensional simplex has exactly two adjacent n-dimensional simplexes if
not on the boundary and exactly one n-dimensional simplex otherwise.
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That is It!

Questions?
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Further Reading

• Siggraph Asia 2008 course notes: Discrete Differential Geometry: An applied
Introduction. (Read Chapters 7 and 8)

• Marek Krzysztof Misztal, Deformable Simplicial Complexes, PhD Thesis, IMM, DTU,
2010
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The Skeleton
Given the simplicial complex K then the m-skeleton is given by

K(m) = {σn|σn ∈ K ∧ dim(σn) = m}
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What Have We Learned?
• Geometry (=point-sets) and topology (= combinatorics) are two different things
• What we consider a nice mesh – the discrete manifold
• Star and link operators – are nice for making local changes
• Boundary and co-boundary operators are really useful for finite volume methods etc.
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Assignment
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Assignment

U n i v e r s i t y o f C o p e n h a g e n Simplicial Complexes 20–04–2024 24



Assignment
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Assignment
For each of the simplex collections below determine which are simplicial complexes
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Assignment
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Assignment
Determine which examples are discrete manifolds and which are not
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Assignment

• A Discrete Manifold is said to have consistent orientation if all top simplexes have the
same orientation

• The link of a simplex σ ∈ K from a simplicial complex K is defined as

link(σ)) ≡ cl(star(σ)) \ star(cl(σ))

• Chains, Co-chains, and much more...
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