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Taylor Series
If f (x) : R 7→ R then we know

f (x + p) = f (x) + f ′(x)p +
1

2
f ′′(x)p2 + · · ·

or written more compactly

f (x + p) =
∞∑

n=0

f (n)(x)
n! pn
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Taylor’s (Formula) Theorem

By definition one has

f (x + p) = f (x) + f ′(x)p +
1

2
f ′′(x)p2 + · · ·+ f (n)(x)

n! pn + Rn

where
Rn =

f (n+1)(x + tp)
(n + 1)!

pn+1

for some 0 < t < 1.
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For n = 0 and n = 1

We get
f (x + p) = f (x) + f ′(x + tp)p︸ ︷︷ ︸

R0

and
f (x + p) = f (x) + f ′(x)p +

f (2)(x + tp)p2

2︸ ︷︷ ︸
R1

Compare this with Theorem 2.1 in Nocedal and Wright (page 14).
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Connection to Taylor Series for n = 0 case
The Mean Value Theorem (MVT) says

f ′(x + tp) = f (x + p)− f (x)
p

So from the Taylor series, we have

f (x + p)− f (x) = f ′(x)p +
1

2
f ′′(x)p2 + · · ·

Use MVT
f (x + p) = f (x) + f ′(x + tp)p

So Taylor’s Theorem is really just MVT on Taylor Series.

U n i v e r s i t y o f C o p e n h a g e n Numerical Optimization 20–04–2024 5



The Fundamental Theorem of Calculus
It says ∫ b

a
f ′(x)dx = f (b)− f (a)

Now from Taylor’s Theorem

f (x + p) = f (x) + f ′(x + tp)p, for some t ∈ (0..1)∫ 1

0
(f (x + p)− f (x)) dt =

∫ 1

0
f ′(x + tp)pdt.

So Taylor’s Theorem can be written as

f (x + p) = f (x) +
∫ 1

0
f ′(x + tp)pdt
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Definitions of Order Notation – big O
We write

f (x) ∈ O(g(x))

if there exist C > 0 and x0 such that

|f (x)| ≤ C |g(x)|

holds for all x > x0. This definition describes the growth rate as x grows.
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Definitions of Order Notation – big O
Big O can be generalized to describe the behavior near some value x0

|f (x)| ≤ C |g(x)| as x → x0

Meaning that there exist there exist C > 0 and δ > 0 such that

|f (x)| ≤ C |g(x)| as |x − x0| < δ

Typically in finite difference approximations when we study how error terms scale we use
x0 = 0.
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Generalization of big O
From the last generalized definition, we may write that

f (x) ∈ O(g(x))

means
lim

x→x0
sup

∣∣∣∣ f (x)
g(x)

∣∣∣∣ < ∞
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Definitions of Order Notation – little o
We write

f (x) ∈ o(g(x))

if
lim

x→x0

f (x)
g(x) = 0
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Lesson Learned

big-O meaning “grows no faster than” (i.e. grows at the same rate or
slower) and little-o meaning “grows strictly slower than”

Hence little-o is considered a stronger statement than big-O.
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Using little-o in Taylor Series
We know

f (x + p) = f (x) + f ′(x)p +
1

2
f ′′(x)p2 + · · ·

Clearly

lim
p→0

1
2 f ′′(x)p2 + · · ·

p = 0

and by definition, we can write

f (x + p) = f (x) + f ′(x)p + o(p)

Intuition: this tells how f (x + p) behaves when p gets smaller.
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Using Big-O in Taylor Series
We know

f (x + p) = f (x) + f ′(x)p +
1

2
f ′′(x)p2 + · · ·

Use Taylor formula
f (x + p) = f (x) + f ′(x)p + R1

where R1 =
1
2 f ′′(x + tp)p2 for some 0 ≤ t ≤ 1. Clearly

|R1| ≤ C
∣∣p2

∣∣
where C = supt

(
1
2 f ′′(x + tp)

)
and by definition we can write

f (x + p) = f (x) + f ′(x)p +O(p2)

Intuition: this tells a loose upper bound on f (x + p).
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Notice the Difference
So we have

f (x + p) = f (x) + f ′(x)p +O(p2)

f (x + p) = f (x) + f ′(x)p + o(p)

Which one is the better one?
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Convergence Rate Definitions
Let εk ∈ R be the error in the kth iteration then
Linear Convergence Rate

lim
k→∞

|εk+1|
|εk |

= c

where 0 < c < 1 is the convergence constant.
Super Linear Convergence Rate

lim
k→∞

|εk+1|
|εk |

= 0

Quadratic Convergence Rate
|εk+1|
|εk |2

≤ M

for some 0 < M ∈ R and for all k sufficiently large.
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Linear Convergence Rate
Basically means that

εk+1 ≤ c εk

for some constant 0 < c < 1. In the worst case, equality holds

ε1 = c ε0
ε2 = c ε1 = c2ε0

...
...

εk = c εk−1 = ckε0
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Linear Convergence Rate
So for linear convergence rate, we have in the worst case,

εk = ckε0 .

Now we take the logarithm,

log εk = log(ck ε0) = k log(c) + log(ε0)

Hence in a log plot, we have a straight line with an intersection with y-axis given by log(ε0)
and slope log(c).
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Quadratic Convergence Rate
Basically means that

εk+1 ≤ Mε2k

for some constant 0 < M. In worst case equality holds

ε1 = Mε20

ε2 = Mε21 = M3ε40

ε3 = Mε22 = M7ε80
...

...

εk = Mε2k−1 = M2k−1 ε2
k

0

U n i v e r s i t y o f C o p e n h a g e n Numerical Optimization 20–04–2024 18



Quadratic Convergence Rate
So we have

εk = M2k−1ε2
k

0 .

Now we take the logarithm

log εk = log(M2k−1 ε2
k

0 ) ,

= (2k − 1) log(M) + 2k log(ε0) ,

= 2k log(Mε0)− logM .

Hence in a log plot, we have a decreasing power function if log(Mε0) < 0 this will occur if
the initial error is sufficiently small.
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Assignment
Given

f (x) =
{

e−
1

x2 ; x 6= 0,

0 ; otherwise,

• Show that f (x) is infinitely differentiable at x = 0

• Write up its Taylor series around x = 0

• Discuss if f (x) is equal to its Taylor series around x = 0

• What requirements should one have to a function f (x) in order for it to be equal to its
Taylor series?
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Assignment

• Find out for what functions f (x) : [a..b] 7→ R that MVT holds for. Here we assume
that a, b ∈ R and a < b.

• Discuss if these requirements are fulfilled for functions that are equal to their Taylor
series
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Assignment

• Try and differentiate f (x + tp) wrt. t and use the result to apply the fundamental
theorem of calculus to

∫ 1
0 f ′(x + tp)pdt. What have you found?

• Discuss what equation 2.5 in Nocedal and Wright really is. Hint consider MVT and
the Fundamental Theorem of Calculus.
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Assignment

• Use formal definitions to show whether

x2 ∈ O(x2)

x2 ∈ O(x2 + x)
x2 ∈ O(200 ∗ x2)

x2 ∈ o(x3)

x2 ∈ o(x !)
ln(x) ∈ o(x)

• Assume f (x) ∈ o(g(x)) does this imply f (x) ∈ O(g(x))
• Assume f (x) ∈ O(g(x)) discuss if this imply f (x) ∈ o(g(x))
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Assignment

• Prove or disprove f (x) ∈ O(x2) ⇒ f (x) ∈ o(x)
• Prove or disprove f (x) ∈ o(x) ⇒ f (x) ∈ O(x2)

Hint:
lim
x→0

f (x)
x = 0

Means that for any value 0 < ε ∈ R there exist 0 < δ ∈ R such that for all x

|x | < δ ⇒
∣∣∣∣ f (x)x

∣∣∣∣ < ε
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Assignment

• Let ε ∈ R and k ∈ N+ then define the sequence L ≡ {εk}N
k=1 for some sufficiently

large N > 1 given by the recurrence relation εk+1 =
1
2εk with ε1 =

1
10 .

• Define Q ≡ {εk}N
k=1 given by εk+1 = 10ε2k with ε1 =

1
10 .

• Define S ≡ {εk}N
k=1 given by εk+1 = c(k)ε2k with ε1 =

1
10 and c(k) = e−

1
k2

Make plots of each sequence and discuss the shape of the plots. Can you identify which is
which just by looking at their shapes?
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Assignment

• Reconsider the sequences of error measures L, S, and Q. Prove/disprove for each
whether it has a linear, super linear, or quadratic convergence rate. (Hint: use the
formal definitions of convergence rates).

• Try to plot the sequences εk ≡ 1 + 1
2

k , εk ≡ 1 + k−k , and εk ≡ 1 + 1
2

2k
. Determine

which ones have linear, super linear, and quadratic convergence rates.

U n i v e r s i t y o f C o p e n h a g e n Numerical Optimization 20–04–2024 26



Assignment

• Try and take all previously listed sequences from previous slides and plot these in log
plots.

• What can you observe from the plots?
• Consider what happens with the log plot of linear convergence rate if you let c be a

decreasing function towards zero as a function of k. What kind of curve shape do you
get?

• Try for quadratic convergence rate to plot the log log εk as a function of k, what do
you discover? (Extra prove that slope of log log εk plot for quadratic converge is log 2
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